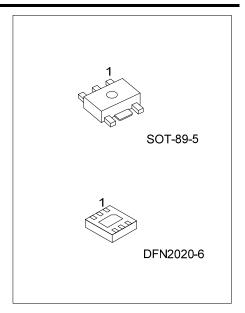


UNISONIC TECHNOLOGIES CO., LTD

LR1805 **Preliminary CMOS IC**

1.0A FAST ULTRA LOW DROPOUT LINEAR REGULATOR

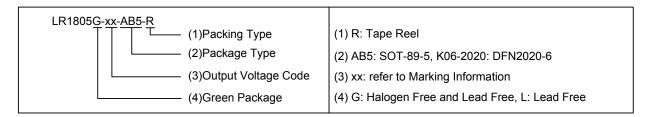

DESCRIPTION

The UTC LR1805/LR1805AD operate from a +1.5V ~ +6V input supply as fast ultra low-dropout linear regulators. Wide output voltage range options are available. The fast response characteristic to make UTC LR1805/LR1805AD suitable for low voltage microprocessor application. The low quiescent current operation and low dropout quality caused by the CMOS process.

The UTC LR1805/LR1805AD has low dropout voltage. The ground pin current is typically 60uA.

Output Voltage Precision: Multiple output voltage options are available and ranging from 1.0V ~ 5.0V at room temperature with a guaranteed accuracy of ±2%, and ±3.0% when varying line and

The output voltage types of UTC LR1805-xx are fixed one in the IC and UTC LR1805AD are adjustable one.

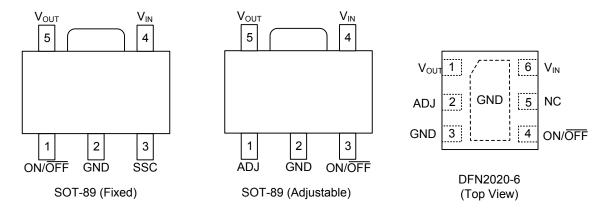


FEATURES

- * Low Dropout Voltage
- * The Guaranteed Output Current is 1A DC
- * Output Voltage Accuracy ± 2%
- * Over temperature Protection And Over current Protection

ORDERING INFORMATION

Ordering	Number	Package	Dooking	
Lead Free	Lead Free Halogen Free		Packing	
LR1805L-xx-AB5-R	LR1805G-xx-AB5-R	SOT-89-5	Tape Reel	
LR1805L-xx-K06-2020-R	LR1805G-xx-K06-2020-R	DFN2020-6	Tape Reel	

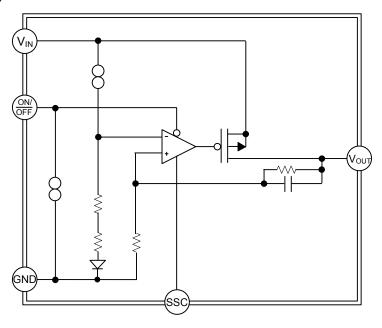


www.unisonic.com.tw 1 of 8

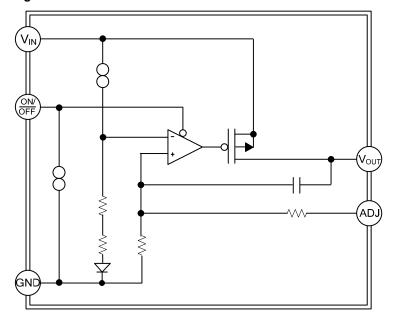
■ MARKING INFORMATION

PACKAGE	VOLTAGE CODE	MARKING
SOT-89-5	12: 1.2V 15 : 1.5V 18: 1.8V 25: 2.5V 30: 3.0V 33: 3.3V 50: 5.0V AD: ADJ	Date Code Voltage Code LR1805 L: Lead Free G: Halogen Free
DFN2020-6	AD: ADJ	R8□□ → Voltage Code

■ PIN CONFIGURATION



■ PIN DESCRIPTION


PIN NO.					
SOT-89 (Fixed)	SOT-89 (Adjustable)	DFN2020-6	PIN NAME	DESCRIPTION	
1	3	4	ON/ OFF	ON/OFF select pin, Active High	
2	2	3	GND	Grounded	
3	-	-	SSC	Inrush current limit pin	
4	4	6	V_{IN}	Input Voltage	
5	5	1	V_{OUT}	Output Voltage	
-	1	2	ADJ	Adjustable Pin	
-	-	5	NC	No Connection	
_	-	Thermal Pad	GND	Grounded	

■ BLOCK DIAGRAM

Fixed Output Voltage

Adjustable Output Voltage

■ ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATINGS	UNIT
Input Voltage	V_{IN}	6.5	V
Shutdown Input Voltage	V _{IN(SHDN)}	V _{IN}	V
Maximum Operating Current (DC)		1	Α
Power Dissipation (Note 3)	P _D	Internally Limited	
Junction Temperature	TJ	+125	°C
Storage Temperature	T _{STG}	-65 ~ +150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

PARAMETER		SYMBOL	RATINGS	UNIT
Junction to Ambient	SOT-89-5	0	185	°C/W
	DFN2020-6	θ_{JA}	90 (Note)	°C/W
Junction to Case	SOT-89-5	0	85	°C/W
	DFN2020-6	θ_{JC}	25 (Note)	°C/W

Note: The data tested by surface mounted on a 2 inch2 FR-4 board with 2OZ copper.

■ ELECTRICAL CHARACTERISTICS (T_J = 25°C, unless otherwise specified.)

For LR1805xx

For LR1805xx PARAMETER	SYMBOL	TEST C	MIN	TYP	MAX	UNIT	
Input Voltage	V _{IN}	TEST SONDITIONS		1.5		6	V
Output Voltage (Note 3)	V _{OUT(E)}	V _{IN} =V _{OUT(S)} +1V I _{OUT} =100mA	1.0V≤V _{OUT(S)} <1.5V	V _{OUT(S)} × 0.98	V _{OUT(S)}	V _{OUT(S)} × 1.02	V
			1.5V≤V _{OUT(S)} ≤5.0V	V _{OUT(S)} × 0.98	V _{OUT(S)}	V _{OUT(S)} × 1.02	٧
Output Voltage Line Regulation	$\triangle V_{OUT1}/$ ($\triangle V_{IN} \times V_{OUT}$)	V _{OUT(S)} +0.5V≤V _{IN}	≤5.5V, I _{OUT} =100mA		0.05	0.2	%/V
Output Voltage Load Regulation	$\triangle V_{OUT2}$	V _{IN} =V _{OUT(S)} +0.5V 1mA≤I _{OUT} ≤300m/		-20		20	mV
		I _{OUT} =300mA	$\begin{array}{l} 1.2 \text{V} \leq \text{V}_{\text{OUT(S)}} < 1.5 \text{V} \\ 1.5 \text{V} \leq \text{V}_{\text{OUT(S)}} < 2.6 \text{V} \\ 2.6 \text{V} \leq \text{V}_{\text{OUT(S)}} \leq 5.0 \text{V} \end{array}$		0.34 0.15 0.07	0.38 0.20 0.1	
Dropout Voltage(Note 4)	$V_{ m drop}$	I _{OUT} =1000mA	$ \begin{aligned} &1.2 \text{V} \leq \text{V}_{\text{OUT(S)}} \leq 1.5 \text{V} \\ &1.5 \text{V} \leq \text{V}_{\text{OUT(S)}} \leq 2.0 \text{V} \\ &2.0 \text{V} \leq \text{V}_{\text{OUT(S)}} \leq 2.6 \text{V} \\ &2.6 \text{V} \leq \text{V}_{\text{OUT(S)}} \leq 5.0 \text{V} \end{aligned} $		0.7 0.50 0.38 0.30		V
Output Current(Note 5)	I _{OUT}	V _{IN} ≥V _{OUT(S)} +1V		1000 (Note 7)			mA
Ground Pin Current In Normal Operation Mode	I _{SS1}	V _{IN} =V _{OUT(S)} +1V, ON/ OFF pin=ON, No Load			60	90	uA
Ground Pin Current In Power-off Mode	I _{SS2}	V _{IN} =V _{OUT(S)} +1V, ON/ OFF pin=OFF, No Load			0.1	1.0	uA
Short Circuit Current	I _{SC}	$V_{IN}=V_{OUT(S)}+1V$, ON/ \overline{OFF} pin=ON, $V_{OUT}=0V$			0.5		Α
ON/ OFF Pin Input Voltage "H"	V _{SH}	V _{IN} =V _{OUT(S)} +1V, F	R _L =1.0KΩ	1.0			V
ON/ OFF Pin Input Voltage "L"	V_{SL}	Determinied by V _{OUT} output level				0.3	V
ON/ OFF Pin Input Current "H"	I _{SH}	$V_{IN}=V_{OUT(S)}+1V$, $V_{ON/\overline{OFF}}=5.5V$			1.0		uA
ON/ OFF Pin Input Current "L"	I _{SL}	V _{IN} =V _{OUT(S)} +1V, \	√ _{ON/OFF} =0V	-0.1		0.1	uA
Inrush current limit time	Trush	$V_{IN}=V_{OUT(S)}+1V$, ON/ \overline{OFF} pin=ON, $I_{OUT}=1000$ mA,Css=0 nF			0.4		mS
iniusii current iiriit tiirie		V _{IN} =V _{OUT(S)} +1V, ON/ OFF pin=ON, I _{OUT} =1000mA,Css=1.0 nF			0.7		1110
Ripple Rejection		$V_{IN}=V_{OUT(S)}+1V$, f=1khz, $\triangle V_{rip}=0.5Vrms$,	1.2V≤V _{OUT(S)} <3.0V		65		
	RR		3.0V≤V _{OUT(S)} ≤3.5V		60		dB
		I _{OUT} =100mA	3.5V≤V _{OUT(S)} ≤5.0V		55		
Thermal Shutdown detection temperature	T _{SD}	Junction temperature			150		°C
Thermal Shutdown release temperature	T _{SR}	Junction temperature			120		°C

■ ELECTRICAL CHARACTERISTICS (Cont.)

For LR1805AD

						-	
PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT
Input Voltage	V _{IN}			1.5		6	V
Reference Voltage for Adjustable Voltage Regulator	Vout	V _{OUT} =V _{ADJ} , V _{IN} =2.0V, I _{OUT} =100mA		0.98	1.0	1.02	V
Output Voltage Range	RV _{OUT}			1.0		5.0	V
Internal Resistance Value of Adjust Pin	R _{IC}				1.0		МΩ
Output Voltage Line Regulation	$\triangle V_{OUT1}/$ ($\triangle V_{IN} \times V_{OUT}$)	V _{OUT(S)} +0.5V≤V _{II}	_N ≤5.5V,I _{OUT} =100mA		0.05	0.2	%/V
Output Voltage Load Regulation	$\triangle V_{OUT2}$	V _{IN} =V _{OUT(S)} +1V,	1mA≤I _{OUT} ≤300mA	-20		20	mV
Dropout Voltage(Note 4)	V_{drop}	V _{OUT} =V _{ADJ}	I _{OUT} =300mA		0.54	0.58	V
Dropout Voltage(Note 4)	v arop	VOUT VADJ	I _{OUT} =1000mA		0.90		v
Output Current(Note 5)	l _{OUT}	V _{IN} ≥V _{OUT(S)} +1V		1000 (Note 7)			mA
Ground Pin Current In Normal Operation Mode	I _{SS1}	V _{IN} =V _{OUT(S)} +1V, ON/ OFF pin=ON, No Load			60	90	uA
Ground Pin Current In Power-off Mode	I _{SS2}	V _{IN} =V _{OUT(S)} +1V, ON/ OFF pin=OFF, No Load			0.1	1.0	uA
Short Circuit Current	I _{SC}	V _{IN} =V _{OUT(S)} +1V, V _{OUT} =0V	ON/ OFF pin=ON,		0.5		Α
ON/ OFF Pin Input Voltage "H"	V_{SH}	V _{IN} =V _{OUT(S)} +1V,	R _L =1.0KΩ	1.0			V
ON/ OFF Pin Input Voltage "L"	V_{SL}	Determinied by	V _{OUT} output level			0.3	V
ON/ OFF Pin Input Current "H"	I _{SH}	V _{IN} =V _{OUT(S)} +1V,	V _{ON/OFF} =5.5V		1.0		uA
ON/ OFF Pin Input Current "L"	I _{SL}	$V_{IN}=V_{OUT(S)}+1V$,	V _{ON/ OFF} =0V	-0.1		0.1	uA
Inrush current limit time	Trush	I _{OUT} =1000mA	ON/ OFF pin=ON,		0.4		mS
Dinnia Daination	IDDI	V _{IN} =V _{OUT(S)} +1V, f=1khz,	1.2V≤V _{OUT(S)} <3.0V		65		٩D
Ripple Rejection	RR	\triangle V _{rip} =0.5Vrms, I _{OUT} =100mA	3.0V≤V _{OUT(S)} ≤3.5V		60		dB
Thermal Shutdown detection temperature	T _{SD}	Junction temperature			150		°C
Thermal Shutdown release temperature	T_{SR}	Junction temperature			120		°C

Notes: 1. The UTC **LR1805** output must be diode-clamped to ground. If used in a dual-supply system where the regulator load is returned to a negative supply.

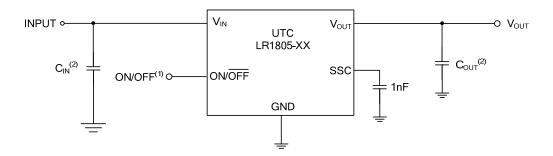
- 2. Devices must be derated based on package thermal resistance at elevated temperatures.
- 3. $V_{\text{OUT(S)}}$: Specified output voltage

V_{OUT(E)}: Actual output voltage

Output voltage when fixing I_{OUT}(=100ma) and inputting V_{OUT(S)}+1.0V

4. $Vdrop=V_{IN1}-(V_{OUT3}\times0.98)$

 V_{OUT3} is the output voltage when V_{IN} = $V_{OUT(S)}$ +1.0V and I_{OUT} =300mA, 1000mA.

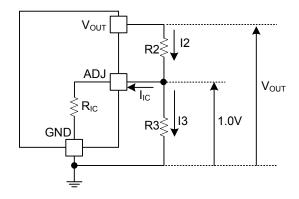

- 5. The output current at which the output voltage becomes 95% of $V_{OUT(E)}$ after gradually increasing the output current.
- 6. The output current can be at least this value.

Due to restrictions on the package power dissipation, this value may not be satisfied. Attention should be paid to the power dissipation of the package when the output current is large.

This specification is guaranteed by design.

■ TYPICAL APPLICATION CIRCUIT

Fixed Output Voltage



- (1) ON/ $\overline{\text{OFF}}$ pins must be pulled high through a $10k\Omega$ pull-up resistor.
- (2) Generally a series regulator may cause oscillation, depending on the selection of external parts. The following conditions are recommended for this IC. However, be sure to perform sufficient evaluation under the actual usage conditions for selection, including evaluation of temperature characteristics.

Input capacitor (C_{IN}): 2.2 μ F or more Output capacitor (C_{L}): 2.2 μ F or more

■ TYPICAL APPLICATION CIRCUIT (Cont.)

Adjustable Output Voltage

The Output Voltage may be adjustable for any output voltage between its 1.0V reference and its V_{DD} setting level. An external pair of resistors is required, as shown above.

The complete equation for the output voltage is described step by step as follows;

$$12 = I_{1C} + 13$$
 (1)

Thus,

$$I2 = I_{IC} + 1.0 / R3$$
 (3)

Therefore,

$$V_{OUT} = 1.0 + R2 \times I2$$
 (4)

Put Equation (3) into Equation (4), then

$$V_{OUT} = 1.0 + R2 (I_{IC} + 1.0 / R3)$$

$$=1.0 (1 + R2 / R3) + R2 \times I_{IC}$$
 (5)

In 2nd term, or R2×I $_{\text{IC}}$ will produce an error in V $_{\text{OUT}}$. In Equation (5),

$$I_{IC} = 1.0 / R_{IC}$$
 (6)

$$R2 \times I_{IC} = R2 \times 1.0 / R_{IC}$$

$$=1.0 \times R2 / R_{IC}$$
 (7)

For better accuracy, choosing R2 (<<R_{IC}) reduces this error.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.