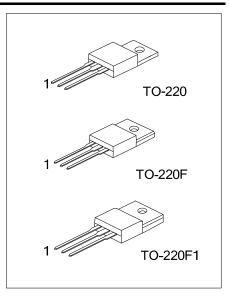
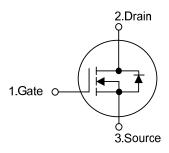
UNISONIC TECHNOLOGIES CO., LTD


14N70-TC Power MOSFET

14A, 700V N-CHANNEL POWER MOSFET

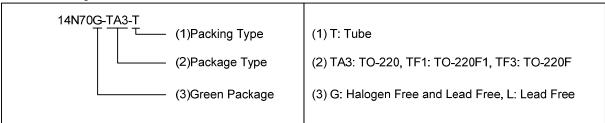
DESCRIPTION

The UTC 14N70-TC are N-Channel enhancement mode power field effect transistors (MOSFET) which are produced using UTC's proprietary, planar stripe, DMOS technology.

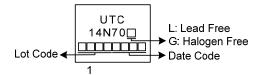

These devices are suited for high efficiency switch mode power supply. To minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode the advanced technology has been especially tailored.

FEATURES

- * $R_{DS(ON)} \le 0.83\Omega$ @ $V_{GS}=10V$, $I_{D}=7.0A$
- * Fast switching capability
- * Avalanche energy specified
- * Improved dv/dt capability, high ruggedness


SYMBOL

ORDERING INFORMATION


Ordering Number		Dackago	Pin Assignment			Dooking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
14N70L-TA3-T	14N70G-TA3-T	TO-220	G	D	S	Tube	
14N70L-TF1-T	14N70G-TF1-T	TO-220F1	G	D	S	Tube	
14N70L-TF3-T	14N70G-TF3-T	TO-220F	G	D	S	Tube	

Note: Pin Assignment: G: Gate D: Drain S: Source

www.unisonic.com.tw 1 of 7 14N70-TC

■ MARKING

14N70-TC Power MOSFET

■ **ABSOLUTE MAXIMUM RATINGS** (T_C = 25°C, unless otherwise specified)

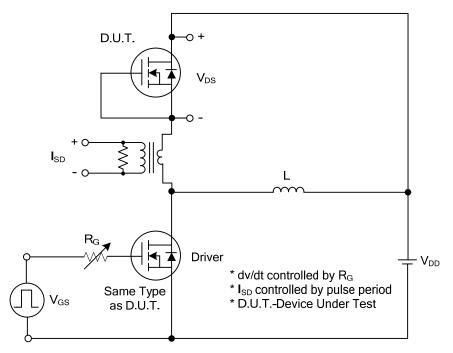
PARAMETER		SYMBOL	RATINGS	UNIT	
Drain-Source Voltage		$V_{ extsf{DSS}}$	700	V	
Gate-Source Voltage		V_{GSS}	±30	V	
Drain Current	Continuous	I_{D}	14	Α	
	Pulsed (Note 2)	I_{DM}	28	Α	
Avalanche Energy	nche Energy Single Pulsed (Note 3)		198	mJ	
Peak Diode Recovery dv/dt (Note 4)		dv/dt	2.35	V/ns	
Power Dissipation	TO-220	D	150	W	
	TO-220F/TO-220F1	P_{D}	37	W	
Junction Temperature		T _J	+150	°C	
Storage Temperature		T_{STG}	-55 ~ +150	°C	

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

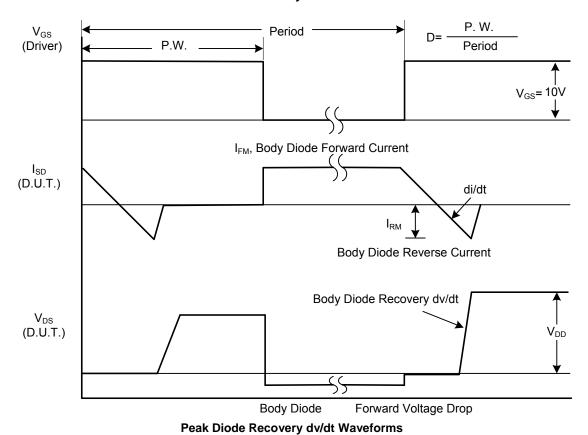
- 2. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 3. L = 10mH, I_{AS} = 6.3A, V_{DD} = 50V, R_G = 25 Ω , Starting T_J = 25 $^{\circ}$ C
- 4. $I_{SD} \le 14A$, di/dt $\le 200A/s$, $V_{DD} \le BV_{DSS}$ Starting $T_J = 25^{\circ}C$

■ THERMAL CHARACTERISTICS

PARAMETER		SYMBOL	RATINGS	UNIT
Junction to Ambient		θ_{JA}	62.5	°C/W
Junction to Case	TO-220	0	0.83	°C/W
	TO-220F/TO-220F1	$\theta_{ extsf{JC}}$	3.37	°C/W

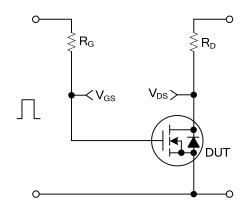

■ ELECTRICAL CHARACTERISTICS (T_C =25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT			
OFF CHARACTERISTICS									
Drain-Source Breakdown Voltage	BV_{DSS}	V _{GS} =0V, I _D =250μA	700			V			
Drain-Source Leakage Current	I _{DSS}	V _{DS} =700V, V _{GS} =0V			10	μΑ			
Gate-Source Leakage Current	I_{GSS}	V _{GS} =±30V, V _{DS} =0V			±100	nA			
ON CHARACTERISTICS									
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2.0		4.0	V			
Static Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =7.0A			0.83	Ω			
DYNAMIC CHARACTERISTICS									
Input Capacitance	C_{ISS}	V _{DS} =25V, V _{GS} =0V, f=1MHz		1746		pF			
Output Capacitance	Coss			172		pF			
Reverse Transfer Capacitance	C_{RSS}			13		pF			
SWITCHING CHARACTERISTICS									
Total Gate Charge	Q_G	V _{DS} =100V, V _{GS} =10V, I _D =14A -I _G =1mA (Note 1, 2)		40		nC			
Gate-Source Charge	Q_GS			8.7		nC			
Gate-Drain Charge	Q_GD			1.9		nC			
Turn-On Delay Time	$t_{D(ON)}$	V_{DD} =100V, V_{GS} =10V, I_{D} =14A, I_{G} =25 Ω (Note 1, 2)		24		ns			
Turn-On Rise Time	t_R			21		ns			
Turn-Off Delay Time	t _{D(OFF)}			132		ns			
Turn-Off Fall Time	t_{F}			41		ns			
SOURCE- DRAIN DIODE RATINGS AND CH	ARACTERIS [*]	TICS	_	_	_				
Maximum Continuous Drain-Source Diode					14	Α			
Forward Current	I _S				14	A			
Maximum Pulsed Drain-Source Diode	I				28	Α			
Forward Current	I _{SM}				20	A			
Drain-Source Diode Forward Voltage	V_{SD}	V _{GS} =0V, I _S =14A			1.4	V			
Reverse Recovery Time	t _{rr}	-V _{GS} =0V, I _S =14A, di/dt=100A/μs		420		ns			
Reverse Recovery Charge	Q_{rr}			6.3		μC			


Notes: 1. Pulse Test : Pulse width ≤300µs, Duty cycle ≤ 2%.

^{2.} Essentially independent of operating temperature.

■ TEST CIRCUITS AND WAVEFORMS

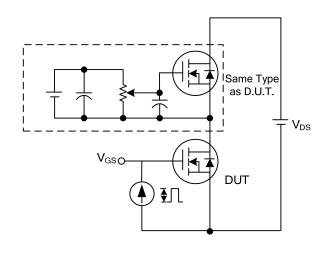


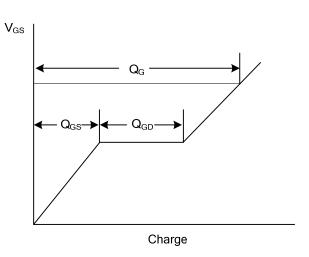
Peak Diode Recovery dv/dt Test Circuit

14N70-TC Power MOSFET

■ TEST CIRCUITS AND WAVEFORMS

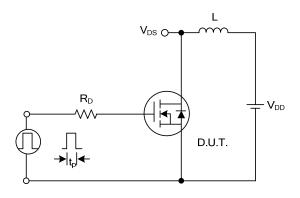
V_{DS}
90%

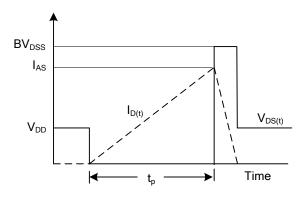

t_{d(ON)} t_R


t_{d(OFF)} t_F

t_{OFF}

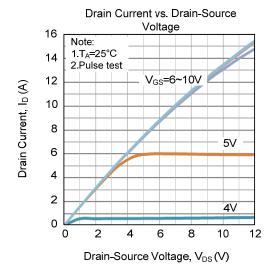
itching Test Circuit

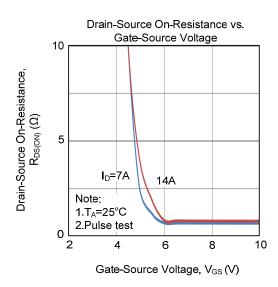

Switching Waveforms

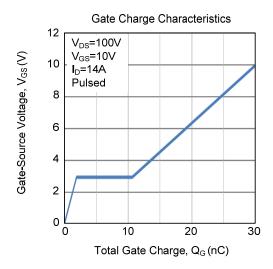


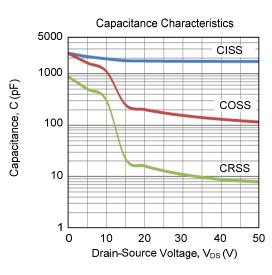
Gate Charge Test Circuit

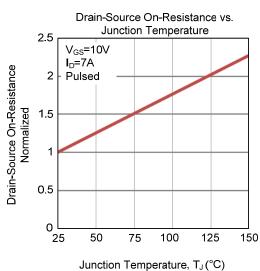
Gate Charge Waveform

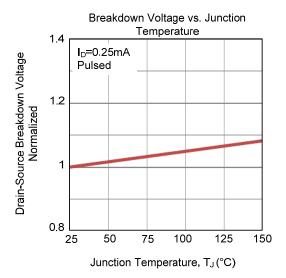


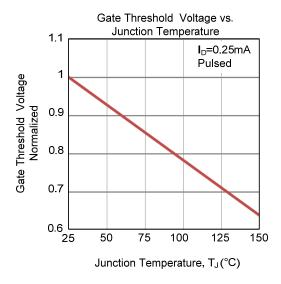


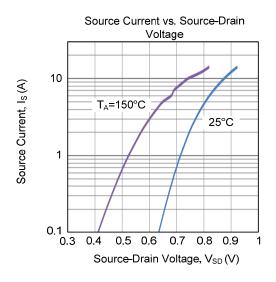

Unclamped Inductive Switching Test Circuit

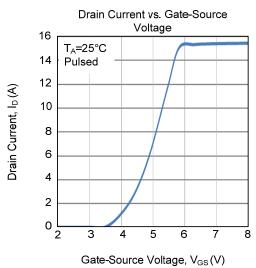

Unclamped Inductive Switching Waveforms

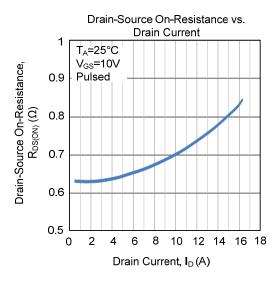

■ TYPICAL CHARACTERISTICS

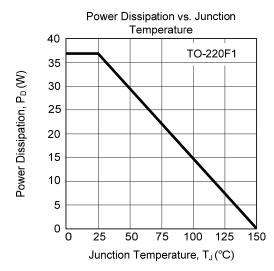


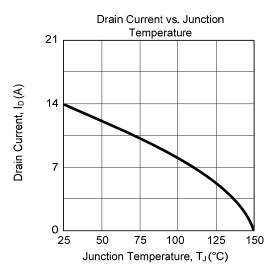


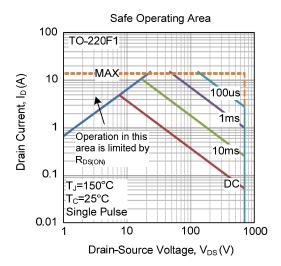







■ TYPICAL CHARACTERISTICS (Cont.)





■ TYPICAL CHARACTERISTICS (Cont.)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.