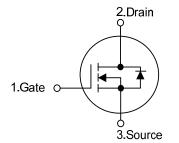


Power MOSFET

2A, 700V N-CHANNEL SUPER-JUNCTION MOSFET


DESCRIPTION

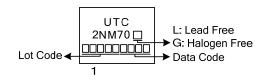
The **UTC 2NM70-QFD** is a Super Junction MOSFET Structure and is designed to have better characteristics, such as fast switching time, low gate charge, low on-state resistance and a high rugged avalanche characteristics. This power MOSFET is usually used at DC-DC, AC-DC converters for power applications.

FEATURES

- * $R_{DS(ON)}$ < 4.0 Ω @ V_{GS} = 10V, I_D =1.0A
- * Fast switching capability
- * Avalanche energy specified
- * Improved dv/dt capability, high ruggedness

SYMBOL

1 TO-220F1 1 TO-251


ORDERING INFORMATION

Ordering Number		Deekege	Pin Assignment			Deaking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
2NM70L-TF1-T	2NM70G-TF1-T	TO-220F1	G	D	S	Tube	
2NM70L-TM3-T	2NM70G-TM3-T	TO-251	G	D	S	Tube	
2NM70L-TN3-R	2NM70G-TN3-R	TO-252	G	D	S	Tape Reel	
Nata: Din Assimument C:	Cata D. Drain C. Cauraa						

Note: Pin Assignment: G: Gate D: Drain S: Source

2NM70G-TF1-T	(1) T: Tube, R: Tape Reel
(2)Package Type	(2) TF1: TO-220F1, TM3: TO-251, TN3: TO-252
(3)Green Package	(3) G: Halogen Free and Lead Free, L: Lead Free

MARKING

■ ABSOLUTE MAXIMUM RATINGS (T_c = 25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V _{DSS}	700	V
Gate-Source Voltage		V _{GSS}	±30	V
Drain Current	Continuous	I _D	2	А
	Pulsed (Note 2)	I _{DM}	6	А
Avalanche Energy	Single Pulsed (Note 3)	E _{AS}	13	mJ
Peak Diode Recovery d	eak Diode Recovery dv/dt (Note 4)		10	V/ns
Power Dissinction	TO-220F1	D	28	W
Power Dissipation	TO-251/TO-252	P _D <u>20</u> 30		W
Junction Temperature	unction Temperature		+150	°C
Storage Temperature		T _{STG}	-55 ~ +150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

2. Repetitive Rating: Pulse width limited by maximum junction temperature.

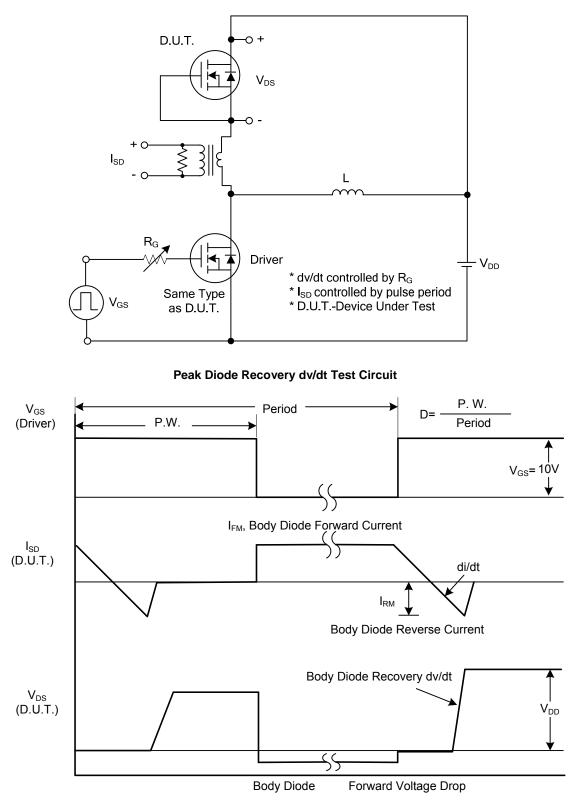
3. L=10mH, I_{AS} =1.6A, V_{DD} =50V, R_G =25 Ω , Starting T_J = 25°C

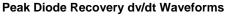
4. $I_{SD}\leq 2.0A$, di/dt $\leq 200A/\mu s$, $V_{DD} \leq BV_{DSS}$, Starting $T_J = 25^{\circ}C$

THERMAL DATA

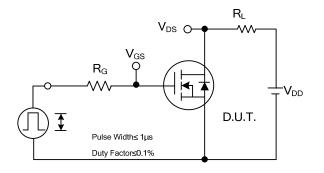
PARAMETER		SYMBOL	RATINGS	UNIT	
Junction to Ambient	TO-220F1	0	62.5	°C/W	
	TO-251/TO-252	θ _{JA}	110	°C/W	
Junction to Case	TO-220F1	0	4.46	°C/W	
	TO-251/TO-252	θ _{JC}	4.24	°C/W	

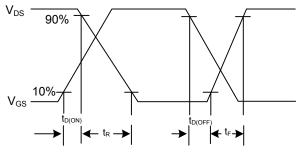
■ ELECTRICAL CHARACTERISTICS (T_J=25°C, unless otherwise specified)


SYMBOL BV _{DSS} I _{DSS} I _{GSS}	TEST CONDITIONS $V_{GS} = 0V, I_D = 250\mu A$ $V_{DS} = 700V, V_{GS} = 0V$ $V_{GS} = 30V, V_{DS} = 0V$	MIN 700	TYP	MAX	UNIT V
I _{DSS}	V _{DS} = 700V, V _{GS} = 0V	700			V
I _{DSS}	V _{DS} = 700V, V _{GS} = 0V	700			V
I _{GSS}	$V_{CS} = 30V_{.}V_{DS} = 0V_{.}$			10	μA
IGSS				100	nA
	V_{GS} = -30V, V_{DS} = 0V			-100	nA
V _{GS(TH)}	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2.5		4.5	V
R _{DS(ON)}	V _{GS} = 10V, I _D =1.0A			4.0	Ω
CISS			130		рF
C _{OSS}	V _{DS} =25V, V _{GS} =0V, f =1MHz		90		рF
C _{RSS}			10		рF
Q_{G}			12		nC
Q_{GS}			4.5		nC
Q_{GD}			3.6		nC
t _{D (ON)}			1		ns
t _R	V _{DD} =100V, V _{GS} =10V, I _D =2A,		3.8		ns
t _{D(OFF)}	R _G =25Ω (Note 1, 2)		16		ns
t⊨			21		ns
Is				2.0	Α
1				6.0	٨
ISM				0.0	A
V_{SD}	I _S =2.0A, V _{GS} =0V	1.4		1.4	V
t _{rr}	I _S =2.0A, V _{GS} =0V		94		nS
Qrr	dI/dt=100A/µs		6 28		μC
	$\begin{array}{c} C_{ISS} \\ C_{OSS} \\ C_{RSS} \\ \end{array} \\ \hline \\ Q_G \\ Q_{GS} \\ Q_{GD} \\ \hline \\ t_D (ON) \\ \hline \\ t_R \\ \hline \\ t_{D(OFF)} \\ \hline \\ t_F \\ \hline \\ I_S \\ \hline \\ I_{SM} \\ \hline \\ V_{SD} \\ \hline \\ \hline \\ t_{rr} \\ \end{array}$	$\begin{tabular}{ c c c c c } \hline C_{ISS} & \\ \hline C_{OSS} & \\ \hline C_{RSS} & \\ \hline \\$	$\begin{array}{c c c c c c c c } \hline C_{ISS} & & & & & & & & & \\ \hline C_{OSS} & & & & & & & & \\ \hline C_{RSS} & & & & & & & & \\ \hline \hline C_{RSS} & & & & & & & \\ \hline \hline C_{RSS} & & & & & & & \\ \hline \hline \hline C_{RSS} & & & & & & \\ \hline \hline$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

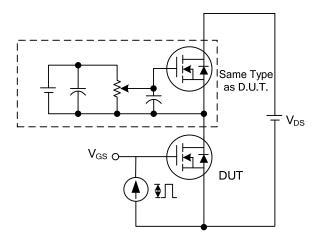

Notes: 1. Pulse Test: Pulse width \leq 300µs, Duty cycle \leq 2%.

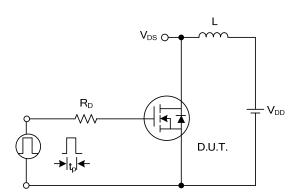
2. Essentially independent of operating temperature.


TEST CIRCUITS AND WAVEFORMS

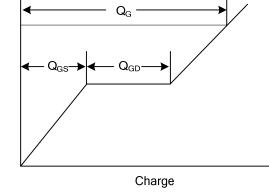


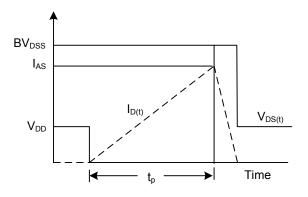
■ TEST CIRCUITS AND WAVEFORMS (Cont.)



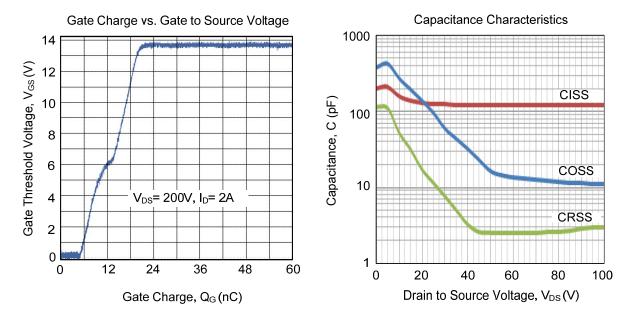


Switching Waveforms


 V_{GS}


Gate Charge Test Circuit

Unclamped Inductive Switching Test Circuit



Unclamped Inductive Switching Waveforms

Power MOSFET

■ TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

