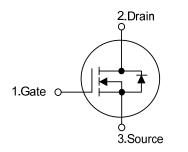


Power MOSFET

2A, 650V N-CHANNEL SUPER-JUNCTION MOSFET

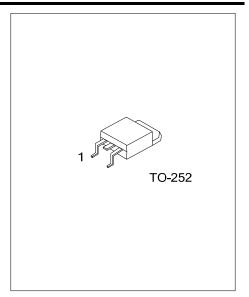
DESCRIPTION

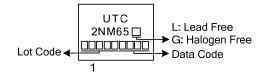

The UTC **2NM65-FDQ** is a Super Junction MOSFET Structure. It uses UTC advanced planar stripe, DMOS technology to provide customers perfect switching performance, minimal on-state resistance.

The UTC **2NM65-FDQ** is universally applied in electronic lamp ballasts based on half bridge topology, high efficiency switched mode power supplies, active power factor correction, etc.

FEATURES

- * $R_{DS(ON)}$ < 3.0 Ω @ V_{GS} = 10V, I_D =1.0A
- * Fast switching capability
- * Avalanche energy specified
- * Improved dv/dt capability, high ruggedness


SYMBOL


ORDERING INFORMATION

	Ordering Number			Deekege	Pin Assignment			Deaking	
	Lead Free H		Free	Package	1	2	3	Packing	
	2NM65L-TN3-R	2NM65G-TN3-R		TO-252	G	D	S	Tape Reel	
Note:	ote: Pin Assignment: G: Gate D: I		S: Source						

2NM65G- <u>TN3-R</u> T (1)Packing Type	(1) R: Tape Reel				
(2)Package Type	(2) TN3: TO-252				
(3)Green Package	(3) G: Halogen Free and Lead Free L: Lead Free				

MARKING

Power MOSFET

■ **ABSOLUTE MAXIMUM RATINGS** (T_c = 25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V _{DSS}	650	V
Gate-Source Voltage		V _{GSS}	±30	V
Drain Current	Continuous	I _D	2	UNIT V A A MJ V/ns W °C
	Pulsed (Note 2)	I _{DM}	6	А
Avalanche Energy	Single Pulsed (Note 3)	E _{AS}	72	mJ
Peak Diode Recovery dv/dt (Note 4)		dv/dt	8	V/ns
Power Dissipation		PD	44	W
Junction Temperature		TJ	+150	°C
Storage Temperature		T _{STG}	-55 ~ +150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

2. Repetitive Rating: Pulse width limited by maximum junction temperature.

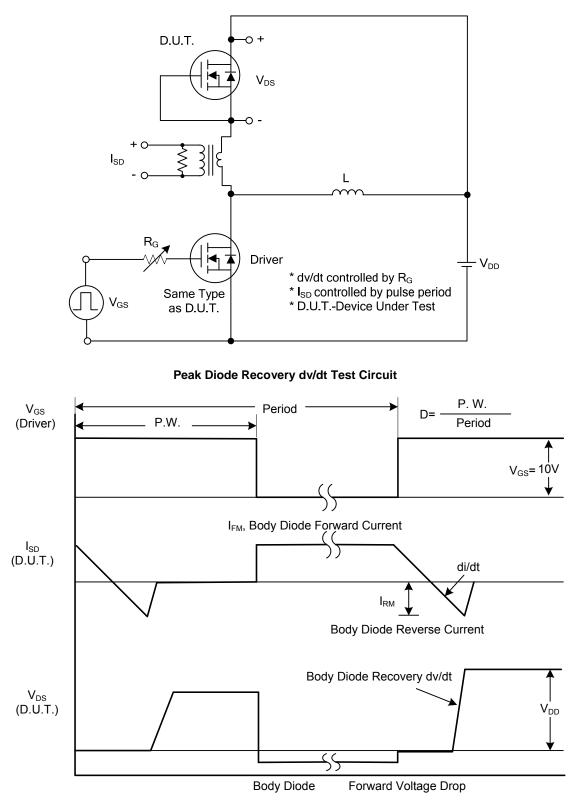
3. L=144mH, I_{AS} =1.0A, V_{DD} =50V, R_G =25 Ω , Starting T_J = 25°C

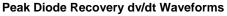
4. $I_{SD} \le 2.0A$, $di/dt \le 200A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25^{\circ}C$

THERMAL DATA

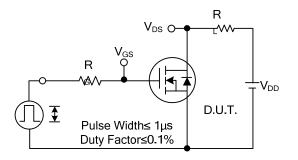
PARAMETER	SYMBOL	RATINGS	UNIT	
Junction to Ambient	θ _{JA}	100	°C/W	
Junction to Case	θ _{JC}	2.8	°C/W	

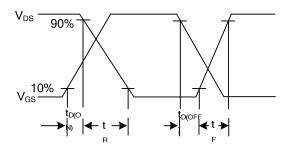
■ ELECTRICAL CHARACTERISTICS (T_J=25°C, unless otherwise specified)

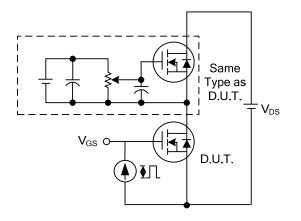

<u>.</u>		_					
PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS							
Drain-Source Breakdown Voltage	9	BV _{DSS}	V _{GS} = 0V, I _D = 250µA	650			V
Drain-Source Leakage Current		I _{DSS}	V _{DS} = 650V, V _{GS} = 0V			10	μA
Cata Course Leakage Current	Forward	- I _{GSS}	V _{GS} = 30V, V _{DS} = 0V			100	nA
Gate-Source Leakage Current	Reverse		$V_{GS} = -30V, V_{DS} = 0V$			-100	nA
ON CHARACTERISTICS					÷.		
Gate Threshold Voltage		V _{GS(TH)}	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2.5		4.5	V
Static Drain-Source On-State Res	sistance	R _{DS(ON)}	V _{GS} = 10V, I _D =1.0A			3.0	Ω
DYNAMIC CHARACTERISTICS							
Input Capacitance		C _{ISS}			130		рF
Output Capacitance		C _{oss}	V _{DS} =25V, V _{GS} =0V, f =1MHz		110		рF
Reverse Transfer Capacitance		C _{RSS}			10		рF
SWITCHING CHARACTERISTIC	S						
Turn-On Delay Time	Furn-On Delay Time				1.2		ns
Turn-On Rise Time		t _R	V _{DD} =300V, V _{GS} =10V, I _D =2.0A,		8.4		ns
Turn-Off Delay Time		t _{D(OFF)}	R _G =25Ω (Note 1, 2)		14		ns
Turn-Off Fall Time		t⊨			20		ns
DRAIN-SOURCE DIODE CHAR	ACTERISTIC	CS					
Continuous Drain-Source Current		ls				2.0	Α
Maximum Body-Diode Pulsed Cu	irrent	I _{SM}				6.0	Α
Drain-Source Diode Forward Voltage		V _{SD}	I _S =2.0A, V _{GS} =0V			1.4	V
Body Diode Reverse Recovery Time		t _{rr}	I _S =2.0A, V _{GS} =0V		110		nS
Body Diode Reverse Recovery Charge		Qrr	dl/dt=100A/µs		0.4		μC
Notos: 1 Pulso Tost: Pulso width	< 200up D	utv $avala < 20/$					

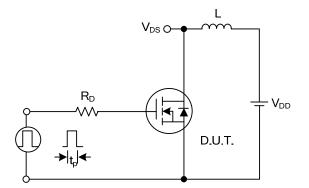

Notes: 1. Pulse Test: Pulse width \leq 300µs, Duty cycle \leq 2%.

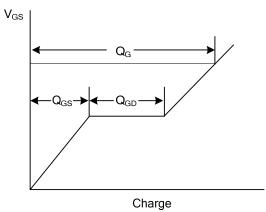
2. Essentially independent of operating temperature.

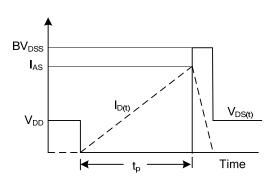

TEST CIRCUITS AND WAVEFORMS



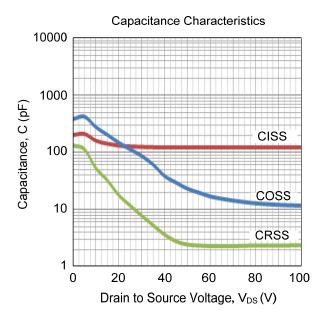

TEST CIRCUITS AND WAVEFORMS


Switching Test Circuit


Switching Waveforms


Gate Charge Test Circuit

Unclamped Inductive Switching Test Circuit



Unclamped Inductive Switching Waveforms

TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

