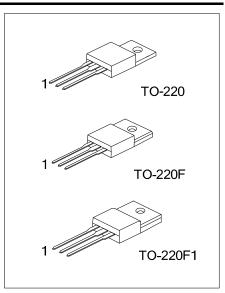
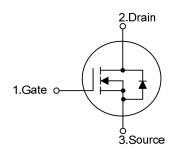


UNISONIC TECHNOLOGIES CO., LTD

UFC8N80 Power MOSFET

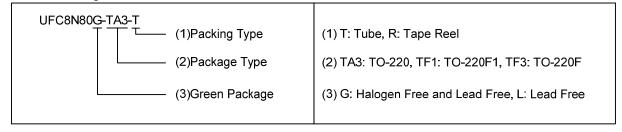

8A, 800V **N-CHANNEL POWER MOSFET**

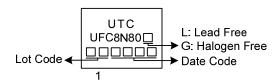
DESCRIPTION


The UTC UFC8N80 provide excellent $R_{\text{DS(ON)}}$, low gate charge and operation with low gate voltages. This device is suitable for use as a load switch or in PWM applications.

FEATURES

- * $R_{DS(ON)}$ < 1.7 Ω @ V_{GS} =10V, I_D =4.0A
- * Fast Switching Capability
- * Avalanche Energy Specified


SYMBOL


ORDERING INFORMATION

Ordering Number		Daakaga	Pin Assignment			Dooking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
UFC8N80L-TA3-T	UFC8N80G-TA3-T	TO-220	G	D	S	Tube	
UFC8N80L-TF1-T	UFC8N80G-TF1-T	TO-220F1	G	D	S	Tube	
UFC8N80L-TF3-T	UFC8N80G-TF3-T	TO-220F	G	D	S	Tube	

Note: Pin Assignment: G: Gate C: Collector E: Emitter

MARKING

www.unisonic.com.tw 1 of 5 UFC8N80 Power MOSFET

■ ABSOLUTE MAXIMUM RATINGS (T_C = 25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT	
Drain-Source Voltage		V_{DSS}	800	V	
Gate-Source Voltage		V_{GSS}	±30	V	
Drain Current	Continuous	Ι _D	8	Α	
Drain Current	Pulsed (Note 2)	I _{DM} 16		Α	
Avalanche Energy	valanche Energy Single Pulsed (Note 3)		136	mJ	
Peak Diode Recovery dv/dt (No	te 4)	dv/dt	1.6	V/ns	
Dower Dissinction	TO-220	J	178	W	
Power Dissipation	TO-220F/TO-220F1	P_D	59	W	
Junction Temperature		T_J	+150	°C	
Storage Temperature		T_{STG}	-55 ~ + 150	°C	

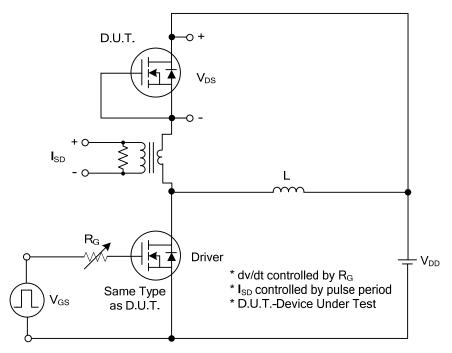
Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 3. L=15.5mH, I_{AS} =4.2A, V_{DD} =100V, R_{G} =25 Ω, Starting T_{J} = 25°C
- 4. $I_{SD} \le 8.0A$, di/dt $\le 200A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25^{\circ}C$

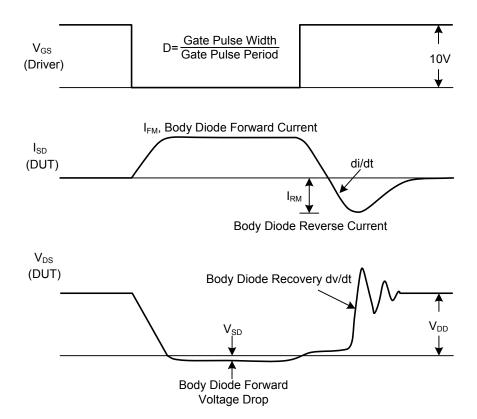
■ THERMAL DATA

PAR	AMETER	SYMBOL	RATINGS	UNIT	
Junction to Ambient		θ_{JA}	62.5	°C/W	
Lunation to Casa	TO-220	0	0.7	°C/W	
Junction to Case	TO-220F/TO-220F1	$\theta_{ m JC}$	2.12	°C/W	

■ **ELECTRICAL CHARACTERISTICS** (T_J =25°C, unless otherwise specified)

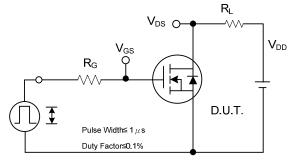

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT			
OFF CHARACTERISTICS									
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V, I _D =250μA	800			V			
Drain-Source Leakage Current	I _{DSS}	V _{DS} =800V, V _{GS} =0V			10	μΑ			
Gate-Source Leakage Current	I_{GSS}	V_{GS} =±30V, V_{DS} =0V			±100	nΑ			
ON CHARACTERISTICS									
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$			4.5	V			
Static Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =4.0A			1.7	Ω			
DYNAMIC CHARACTERISTICS									
Input Capacitance	C_{ISS}			1310		pF			
Output Capacitance	Coss	V _{GS} =0V, V _{DS} =25V, f=1MHz		152		pF			
Reverse Transfer Capacitance	C_{RSS}			15		рF			
SWITCHING CHARACTERISTICS									
Total Gate Charge (Note 1)	Q_G	V _{DS} =260V, V _{GS} =10V, I _D =8A I _G =1mA (Note 1, 2)		37		nC			
Gate-Source Charge	Q_GS			15		nC			
Gate-Drain Charge	Q_{GD}			11		nC			
Turn-On Delay Time	t _{D(ON)}	V_{DD} =30V, V_{GS} =10V, I_{D} =1A, R_{G} =25 Ω (Note 1, 2)		74		ns			
Turn-On Rise Time	t _R			90		ns			
Turn-Off Delay Time	t _{D(OFF)}			292		ns			
Turn-Off Fall Time	t _F			55		ns			
SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS									
Maximum Body-Diode Continuous Current	Is				8	Α			
Maximum Body-Diode Pulsed Current	I _{SM}				16	Α			
Drain-Source Diode Forward Voltage	V_{SD}	I _S =8A, V _{GS} =0V			1.4	V			
Body Diode Reverse Recovery Time	t _{rr}	-I _S =8A, V _{GS} =0V, dI _F /dt=100A/μs		640		nS			
Body Diode Reverse Recovery Charge	Q _{rr}			7		μC			

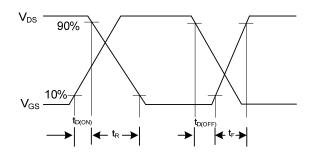
Notes: 1. Pulse Test: Pulse width ≤ 300µs, Duty cycle ≤ 2%.


2. Essentially independent of operating temperature.

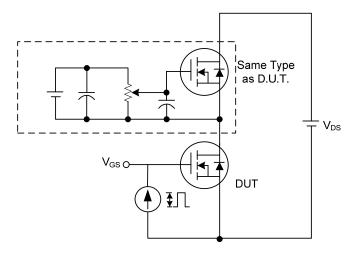
UFC8N80 Power MOSFET

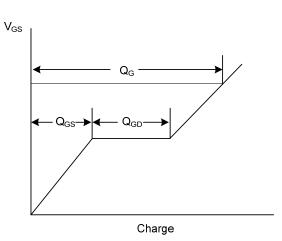
■ TEST CIRCUITS AND WAVEFORMS

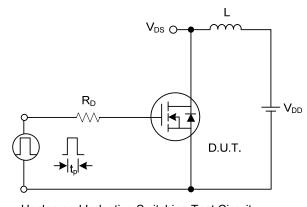

Peak Diode Recovery dv/dt Test Circuit

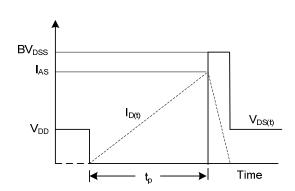

Peak Diode Recovery dv/dt Waveforms

UFC8N80 Power MOSFET

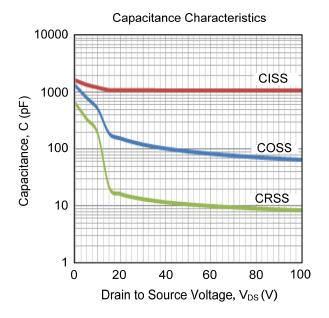

■ TEST CIRCUITS AND WAVEFORMS (Cont.)


Switching Test Circuit


Switching Waveforms


Gate Charge Test Circuit

Gate Charge Waveform



Unclamped Inductive Switching Test Circuit

Unclamped Inductive Switching Waveforms

■ TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.