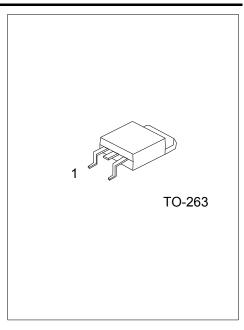
UNISONIC TECHNOLOGIES CO., LTD

UF740-V **Power MOSFET**

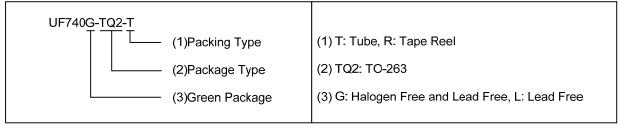

10A, 400V N-CHANNEL **POWER MOSFET**

DESCRIPTION

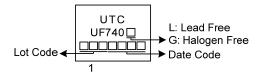
The UTC UF740-V is a N-Channel enhancement mode silicon gate power MOSFET is designed for high voltage, high speed power switching applications such as switching regulators, switching converters, solenoid, motor drivers, relay drivers.

FEATURES

- * $R_{DS(ON)}$ < 0.44 Ω @ V_{GS} = 10V, I_D = 5.0A
- * Single Pulse Avalanche Energy Rated
- * Rugged SOA is Power Dissipation Limited
- * Fast Switching Speeds
- * Linear Transfer Characteristics
- * High Input Impedance


SYMBOL

ORDERING INFORMATION


	Ordering Number		Dookago	Pin Assignment			Dooking
	Lead Free	Halogen-Free	Package	1	2	3	Packing
	UF740L-TQ2-T	UF740G-TQ2-T	TO-263	G	D	S	Tube
	UF740L-TQ2-R	UF740G-TQ2-R	TO-263	G	D	S	Tape Reel

Pin Assignment: G: Gate D: Drain S: Source Note:

UF740-V

■ MARKING

UF740-V Power MOSFET

■ **ABSOLUTE MAXIMUM RATINGS** (T_C=25°C, unless otherwise specified)

PARAMETE	SYMBOL	RATINGS	UNIT	
Drain-Source Voltage	V_{DSS}	400	V	
Gate-Source Voltage	V_{GSS}	±20	V	
Drain Current	Continuous	I_{D}	10	Α
Drain Current	Pulsed (Note 2)	I_{DM}	20	Α
valanche Energy Single Pulsed (Note 3)		E _{AS}	442	mJ
Peak Diode Recovery dv/dt (Note	dv/dt	2.6	V/ns	
Power Dissipation (T _C =25°C)	P_{D}	125	W	
Junction Temperature	T_J	+150	°C	
Storage Temperature	T_{STG}	-55 ~ +150	°C	

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

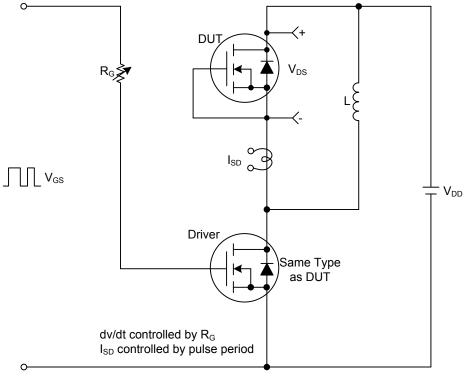
Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 3. L = 10 mH, I_{AS} = 9.4A, V_{DD} = 50V, R_{G} = 25 Ω , Starting T_{J} = 25 $^{\circ}$ C
- 4. $I_{SD} \le 10A$, di/dt $\le 200A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25^{\circ}C$

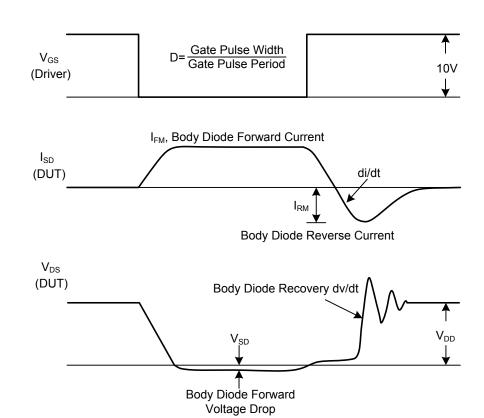
■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT	
Junction to Ambient	θ_{JA}	62.5	°C/W	
Junction to Case	θ_{JC}	1	°C/W	

■ ELECTRICAL CHARACTERISTICS (T_C=25°C, unless otherwise specified)

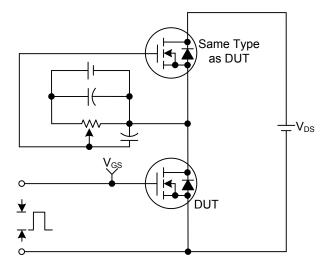

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
OFF CHARACTERISTICS									
Drain-Source Breakdown Voltage	BV_{DSS}	$I_D=250\mu A, V_{GS}=0V$	400			V			
Drain-Source Leakage Current	I _{DSS}	V _{DS} =400V, V _{GS} =0V			25	μΑ			
Cata Sauraa Laakaga Current	Forward	I _{GSS}	V_{GS} =+20V, V_{DS} =0V			+100	nA		
Gate- Source Leakage Current	Reverse		V _{GS} =-20V, V _{DS} =0V			-100	nA		
ON CHARACTERISTICS									
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_D=250\mu A$	1.0		3.0	V			
Static Drain-Source On-State Resist	R _{DS(ON)}	V _{GS} =10V, I _D =5.0A			0.44	Ω			
DYNAMIC PARAMETERS									
Input Capacitance		C_{ISS}			1065		pF		
Output Capacitance		C_{OSS}	V _{GS} =0V, V _{DS} =25V, f=1.0MHz		172		pF		
Reverse Transfer Capacitance	C_{RSS}			32		pF			
SWITCHING PARAMETERS									
Total Gate Charge (Note 1)		Q_G	V _{DS} =200V, V _{GS} =10V, I _D =10A ,		36		nC		
Gate to Source Charge		Q_GS	I_G =1mA (Note 1, 2)		8		nC		
Gate to Drain Charge	Q_GD	ig-iiiiA (Note 1, 2)		10		nC			
Turn-ON Delay Time (Note 1)	$t_{D(ON)}$			30		ns			
Rise Time	t_R	V _{DD} =30V, V _{GS} =10V, I _D =0.5A,		72		ns			
Turn-OFF Delay Time		t _{D(OFF)}	R _G =25Ω (Note 1, 2)		380		ns		
Fall-Time		t_{\scriptscriptstyleF}			130		ns		
SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS									
Maximum Body-Diode Continuous Current		Is				10	Α		
Maximum Body-Diode Pulsed Current		I_{SM}				20	Α		
Drain-Source Diode Forward Voltage	V_{SD}	I _S =10A, V _{GS} =0V			1.4	V			
Body Diode Reverse Recovery Time	t _{rr}	I _S =10A, V _{GS} =0V,		270		ns			
Body Diode Reverse Recovery Cha	Q_{rr}	dI _F /dt=100A/µs		2.6		μC			

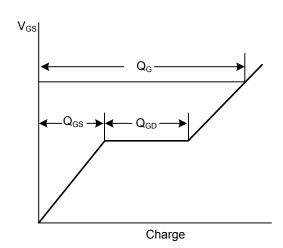
Notes: 1. Pulse Test: Pulse width ≤ 300µs, Duty cycle ≤ 2%.


2. Essentially independent of operating temperature.

UF740-V Power MOSFET

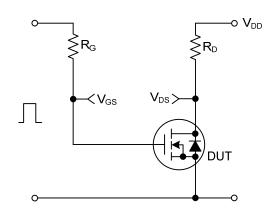
■ TEST CIRCUITS AND WAVEFORMS

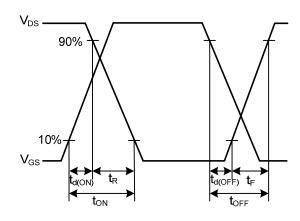

Peak Diode Recovery dv/dt Test Circuit & Waveforms



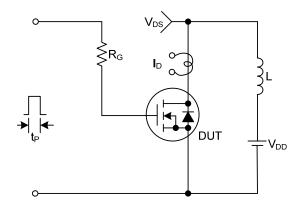
Peak Diode Recovery dv/dt Waveforms

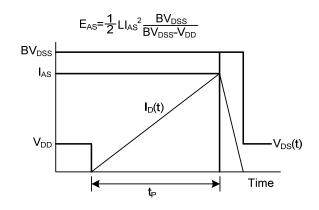
UF740-V Power MOSFET


■ TEST CIRCUITS AND WAVEFORMS



Gate Charge Test Circuit

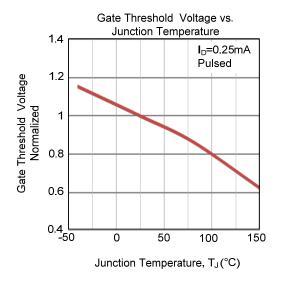

Gate Charge Waveforms

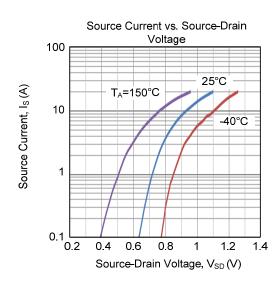

Resistive Switching Test Circuit

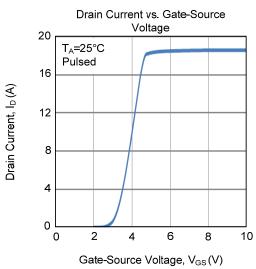
Resistive Switching Waveforms

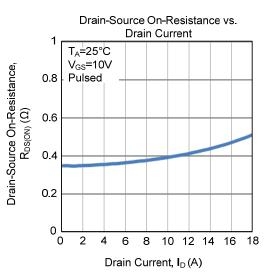
Unclamped Inductive Switching Test Circuit

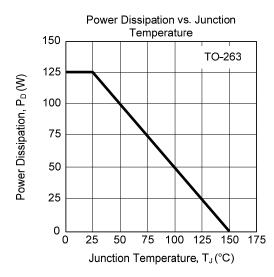
Unclamped Inductive Switching Waveforms

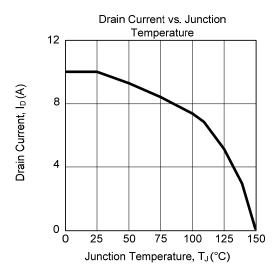

■ TYPICAL CHARACTERISTICS

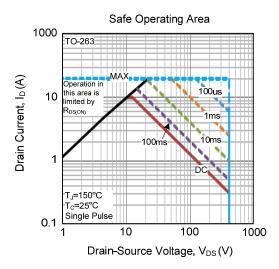



Junction Temperature, T_J (°C)


Junction Temperature, T_J (°C)


■ TYPICAL CHARACTERISTICS (Cont.)





UF740-V

■ TYPICAL CHARACTERISTICS (Cont.)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.