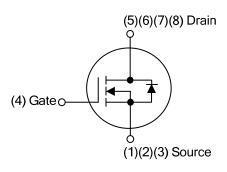
UTT26N03-H Power MOSFET

26A, 30V N-CHANNEL POWER MOSFET


■ DESCRIPTION

The UTC **UTT26N03-H** is a N-channel power MOSFET using UTC's advanced technology to provide the customers with high switching speed and a minimum on-state resistance. It can also withstand high energy in the avalanche.

■ FEATURES

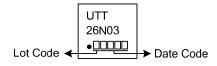
- * $R_{DS(ON)} \le 12 \text{ m}\Omega$ @ V_{GS} = 10V, I_{D} =10A $R_{DS(ON)} \le 18 \text{ m}\Omega$ @ V_{GS} =4.5V, I_{D} =10A
- * Improved dv/dt capability
- * Fast switching
- * Green device available

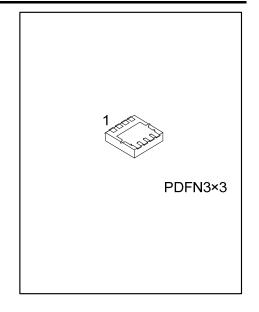
■ SYMBOL

ORDERING INFORMATION

Note: Pin Assignment: G: Gate

Ordering Number		Dealtage	Pin Assignment							Doolsing		
Lead Free	Halogen Free	Package	1	2	3	4	5	6	7	8	Packing	
UTT26N03L-P3030-R	UTT26N03G-P3030-R	PDFN3×3	S	S	S	G	D	D	D	D	Tube	


UTT26N03G-P3030-R


(1)Packing Type
(2)Package Type
(3)Green Package
(3) G: Halogen Free and Lead Free, K: Lead Free

S: Source

D: Drain

MARKING

<u>www.unisonic.com.tw</u> 1 of 5

UTT26N03-H Power MOSFET

■ ABSOLUTE MAXIMUM RATINGS (T_C=25°C, unless otherwise specified)

PARAMETER			SYMBOL	RATINGS	UNIT	
Drain-Source Voltage			V_{DSS}	30	V	
Gate-Source Voltage			V_{GSS}	±12	V	
Continuous Drain Current	Continuous T	_C =25°C	I_{D}	26	Α	
Pulsed Drain Current	sed Drain Current Pulsed (Note 2)			104	Α	
Avalanche Energy, Single Pulsed (Note 3)			E _{AS}	16	mJ	
Peak Diode Recovery dv/dt (Note4)			dv/dt	1.5	V/ns	
Power Dissipation			P_D	35	W	
Junction Temperature			T_J	+150	°C	
Storage Temperature Range			T _{STG}	-55 ~ + 150	°C	

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 3. L=0.1mH, I_{AS} =18A, V_{DD} =25V, R_{G} =25 Ω , Starting T_{J} =25°C
- 4. $I_{SD} \le 26A$, di/dt $\le 200A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25^{\circ}C$

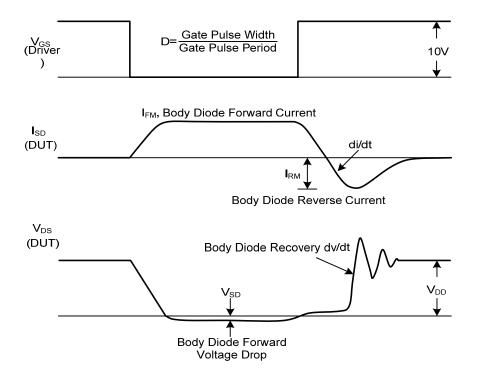
■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT		
Junction to Ambient	θ_{JA}	75	°C/W		
Junction to Case	θ_{JC}	3.7	°C/W		

Note: The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.

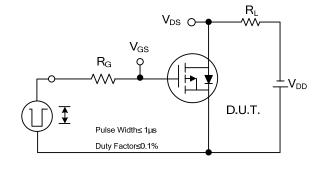
■ ELECTRICAL CHARACTERISTICS (T_J =25°C, unless otherwise specified)

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
OFF CHARACTERISTICS									
Drain-Source Breakdown Voltage		BV_{DSS}	V_{GS} =0V, I_D =250 μ A	30			V		
Drain-Source Leakage Current		I_{DSS}	V _{DS} =30V, V _{GS} =0V			1	μΑ		
Gate-Source Leakage Current	Forward	I _{GSS}	V _{DS} =0V ,V _{GS} =+12V			+100	nA		
	Reverse		V _{DS} =0V ,V _{GS} =-12V			-100	nA		
ON CHARACTERISTICS									
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_D=250\mu A$	1.0		2.5	V		
Drain-Source On-State Resistance		D	V _{GS} =10V, I _D =10A			12	mΩ		
Dialii-Source Oil-State Resistance		R _{DS(ON)}	V _{GS} =4.5V, I _D =10A			18	mΩ		
DYNAMIC PARAMETERS									
Input Capacitance		C_{ISS}			750		pF		
Output Capacitance		Coss	V _{DS} =15V, V _{GS} =0V, f=1.0MHz		130		pF		
Reverse Transfer Capacitance		C_{RSS}			95		pF		
SWITCHING PARAMETERS									
Total Gate Charge (Note 1)		Q_G	V _{DS} =24V, V _{GS} =10V, I _D =26A		16		nC		
Gate to Source Charge		Q_GS	I_{G} =1mA (Note 1, 2)		8.8		nC		
Gate to Drain Charge		Q_GD	IG-IIIA (Note 1, 2)		1.6		nC		
Turn-on Delay Time (Note 1)		t _{D(ON)}			12		ns		
Rise Time		t_R	V _{DD} =15V, V _{GS} =10V, I _D =0.5A,		5.2		ns		
Turn-off Delay Time		t _{D(OFF)}	R _G =25Ω (Note 1, 2)		54		ns		
Fall-Time		t_{F}			38		ns		
SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS									
Maximum Body-Diode Pulsed Current		Is				26	Α		
Drain-Source Diode Forward Voltage (Note 1)		I _{SM}				104	Α		
Maximum Body-Diode Continuous Current		V_{SD}	I _S =1.0A, V _{GS} =0V			1.0	V		
Reverse Recovery Time		t _{rr}	V _{GS} =0V, I _S =26A	250		nS			
Reverse Recovery Charge		Q_{rr}	dI _F /dt=100A/μs		0.33		μC		


Note: 1. Pulse Test : Pulse width \leq 300 μ s, Duty cycle \leq 2%.

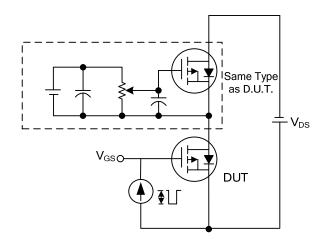
2. Essentially independent of operating temperature.

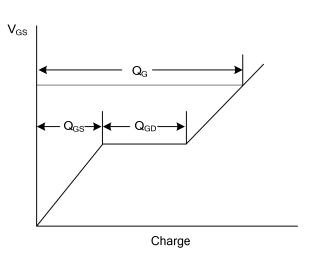
■ TEST CIRCUITS AND WAVEFORMS



Peak Diode Recovery dv/dt Test Circuit

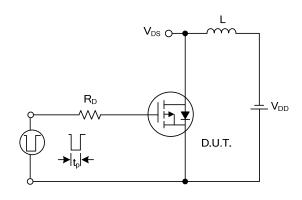
Peak Diode Recovery dv/dt Waveforms

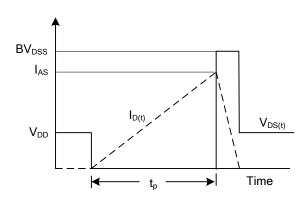

■ TEST CIRCUITS AND WAVEFORMS



 V_{DS} 00% V_{GS} 10% $t_{D(OR)}$ t_{R} t_{R}

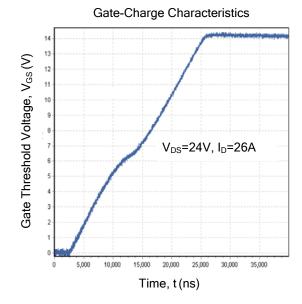
Switching Test Circuit

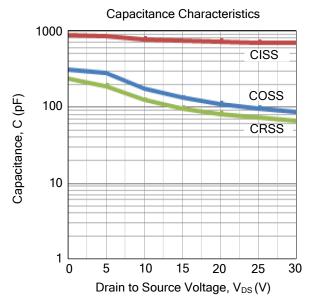

Switching Waveforms



Gate Charge Test Circuit

Gate Charge Waveform




Unclamped Inductive Switching Test Circuit

Unclamped Inductive Switching Waveforms

UTT26N03-H Power MOSFET

■ TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.