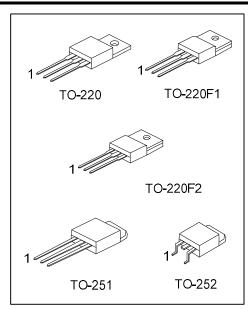
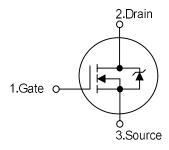


UTC UNISONIC TECHNOLOGIES CO., LTD

6N40-TC Power MOSFET

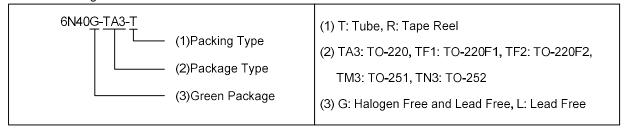

6.0A, 400V N-CHANNEL **POWER MOSFET**

DESCRIPTION

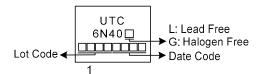

The N-Channel enhancement mode silicon gate power MOSFET is designed for high voltage, high speed power switching applications such as switching regulators, switching converters, solenoid, motor drivers, relay drivers.

FEATURES

- * $R_{DS(ON)} \le 1.1 \Omega$ @ $V_{GS}=10V$, $I_D=3.0A$
- * Avalanche Energy Specified
- * Fast Switching Capability
- * Linear Transfer Characteristics
- * High Input Impedance


SYMBOL

ORDERING INFORMATION


Ordering Number		Daakana	Pin Assignment			Dealdean	
Lead Free	Halogen Free	Package	1	2	3	Packing	
6N40L-TA3-T	6N40G-TA3-T	TO-220	G	D	S	Tube	
6N40L-TF1-T	6N40G-TF1-T	TO-220F1	G	D	S	Tube	
6N40L-TF2-T	6N40G-TF2-T	TO-220F2	G	D	S	Tube	
6N40L-TM3-T	6N40G-TM3-T	TO-251	G	D	S	Tube	
6N40L-TN3-R	6N40G-TN3-R	TO-252	G	D	S	Tape Reel	

Note: Pin Assignment: G: Gate D: Drain S: Source

www.unisonic.com.tw 1 of 7 6N40-TC

■ MARKING

■ **ABSOLUTE MAXIMUM RATINGS** (T_C=25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT	
Drain-Source Voltage		V _{DSS}	400	V	
Gate-Source Voltage		V _{GSS}	±20	V	
Drain Current	Continuous	I _D	6	Α	
	Pulsed (Note 2)	I _{DM}	12	Α	
Avalanche Current (Note 2)		I _{AR}	4.6	Α	
Avalanche Energy	Single Pulsed (Note 3)		106	mJ	
Peak Diode Recovery dv/dt (Note 4)		dv/dt	2.0	V/ns	
Power Dissipation	TO-220		70	W	
	TO-220F1/TO-220F2	P _D	28	W	
	TO-251/TO-252		48	W	
Junction Temperature		TJ	+150	°C	
Storage Temperature		T _{STG}	-55 ~ +150	°C	

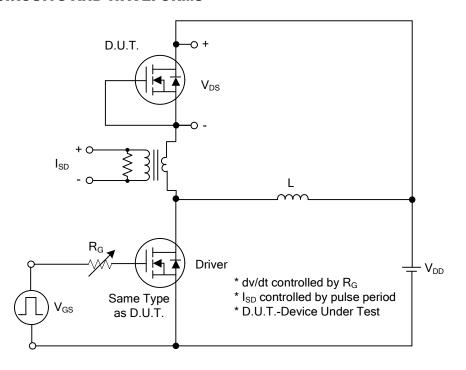
Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 3. L = 10mH, I_{AS} = 4.6A, V_{DD} = 50V, R_G = 25 Ω , Starting T_J = 25 $^{\circ}$ C
- 4. $I_{SD} \le 5.5A$, $di/dt \le 200A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25$ °C

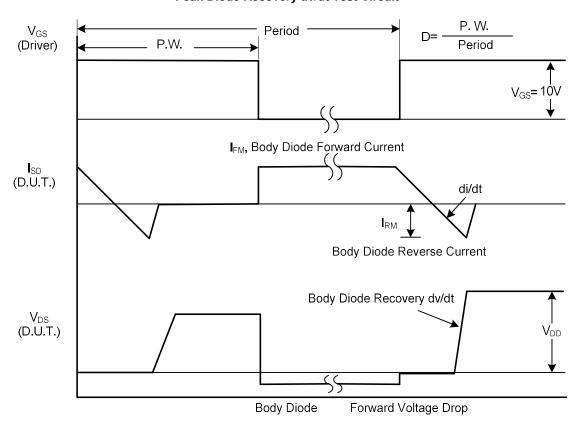
■ THERMAL DATA

PARAMETER		SYMBOL	RATINGS	UNIT
Junction to Ambient	TO-220/TO-220F1 TO-220F2	θја	62.5	°C/W
	TO-251/TO-252		110	°C/W
Junction to Case	TO-220		1.78	°C/W
	TO-220F1/TO-220F2	θ_{JC}	4.4	°C/W
	TO-251/TO-252		2.6 (Note)	°C/W

Note: Device mounted on FR-4 substrate P_{C} board, 2oz copper, with 1inch square copper plate.


■ **ELECTRICAL CHARACTERISTICS** (T_J =25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
OFF CHARACTERISTICS								
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V, I _D =250μA	400			V		
Drain-Source Leakage Current	I _{DSS}	V _{DS} =Rated BV _{DSS} , V _{GS} =0V			25	μΑ		
Gate-Source Leakage Current	I _{GSS}	V _{GS} =±20V			±100	nA		
ON CHARACTERISTICS								
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$			4.0	V		
Static Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =3.0A			1.1	Ω		
DYNAMIC CHARACTERISTICS								
Input Capacitance	C_{ISS}			500		pF		
Output Capacitance	Coss	V _{GS} =0V,V _{DS} =25V, f=1.0MHz		70		pF		
Reverse Transfer Capacitance	C _{RSS}			7		pF		
SWITCHING CHARACTERISTICS								
Total Gate Charge (Note 1)	Q_G	V _{DS} =320V, V _{GS} =10V, I _D =6A I _G =1mA (Note1, 2)		12		nC		
Gate to Source Charge	Q_GS			3.5		nC		
Gate to Drain Charge	Q_GD			3		nC		
Turn-ON Delay Time (Note 1)	t _{D(ON)}			6		ns		
Rise Time	t_R	V _{DS} =100V, V _{GS} =10V, I _D =6A,		18		ns		
Turn-OFF Delay Time	t _{D(OFF)}	R _G =25Ω (Note1, 2)		32		ns		
Fall-Time	t⊧			25		ns		
SOURCE- DRAIN DIODE RATINGS AND CHA	ARACTERIST	ΓICS						
Maximum Body-Diode Continuous Current	Is				6	Α		
Maximum Body-Diode Pulsed Current	I _{SM}				12	Α		
Drain-Source Diode Forward Voltage (Note 1)	V_{SD}	I _S =6.0A, V _{GS} =0V			1.6	V		
Body Diode Reverse Recovery Time (Note 1)	t _{rr}	I _S =6.0A, V _{GS} =0V		180		ns		
Body Diode Reverse Recovery Charge	Q_{rr}	dI _F /dt=100A/μs		2.3		μC		


Notes: 1. Pulse Test: Pulse width \leq 300 μ s, Duty cycle \leq 2%.

^{2.} Essentially independent of operating temperature.

■ TEST CIRCUITS AND WAVEFORMS

Peak Diode Recovery dv/dt Test Circuit

Peak Diode Recovery dv/dt Waveforms

6N40-TC Power MOSFET

■ TEST CIRCUITS AND WAVEFORMS

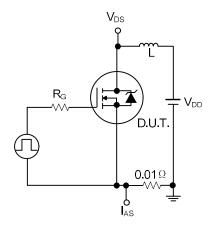


Figure 1A. Unclamped Energy Test Circuit

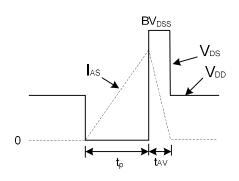


Figure 1B. Unclamped Energy Waveforms

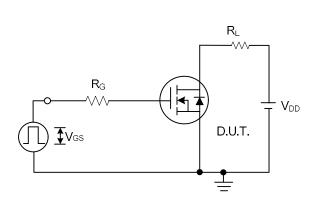


Figure 2A. Switching Time Test Circuit

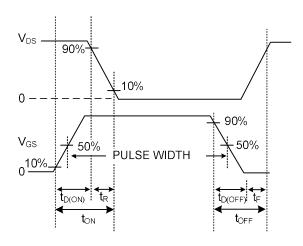


Figure 2B. Resistive Switching Waveforms

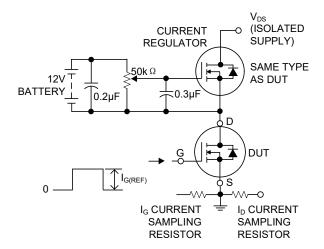


Figure 3A. Gate Charge Test Circuit

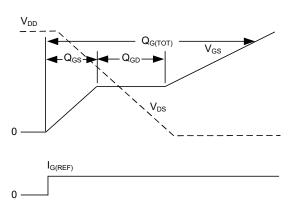


Figure 3B. Gate Charge Waveforms

6N40-TC

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.