UTT170N08H

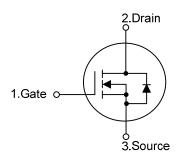
Preliminary

POWER MOSFET

170A, 80V N-CHANNEL ENHANCEMENT MODE TRENCH POWER MOSFET

DESCRIPTION

The UTC **UTT170N08H** is a N-channel Power MOSFET, it uses UTC's advanced technology to provide the customers with high switching speed and low gate charge, etc.


The UTC **UTT170N08H** applies to primary side switch, synchronous rectifier, Motor Drives, etc.

TO-220

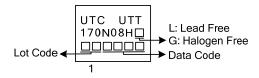
■ FEATURES

- * $R_{DS(ON)}$ < 5.1 m Ω @ V_{GS} =10V, I_{D} =60A
- * High Cell Density Trench Technology
- * High Power and Current Handling Capability

■ SYMBOL

■ ORDERING INFORMATION

Ordering Number		Doolsons	Pin	Assignm	Dooking		
Lead Free	Halogen Free	Package	1	2	3	Packing	
UTT170N08HL-TA3-T	UTT170N08HG-TA3-T	TO-220	G	D	S	Tube	


Note: Pin Assignment: G: Gate D: Drain S: Source

UTT170N08HG-TA3-T (1)Packing Type (1) T: Tube

(2)Package Type (2) TA3: TO-220

(3)Green Package (3) G: Halogen Free and Lead Free, L: Lead Free

MARKING

<u>www.unisonic.com.tw</u> 1 of 5

■ **ABSOLUTE MAXIMUM RATINGS** (T_C=25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT	
Drain-Source Voltage		$V_{ extsf{DSS}}$	80	>	
Gate-Source Voltage		V_{GSS}	±20	V	
Continuous Drain Current	Continuous	I_{D}	170	Α	
Pulsed Drain Current	ulsed Drain Current Pulsed (Note 2)		680	Α	
Avalanche Current (Note 3)		I_{AR}	42	Α	
Avalanche energy	Single Pulsed (Note 3)	E _{AS}	88	mJ	
Peak Diode Recovery dv/dt (Note 4)		dv/dt	4.2	V/nS	
Power Dissipation		P_{D}	300	W	
Junction Temperature		T_J	+150	°C	
Storage Temperature Range		T _{STG}	-55 ~ +150	°C	

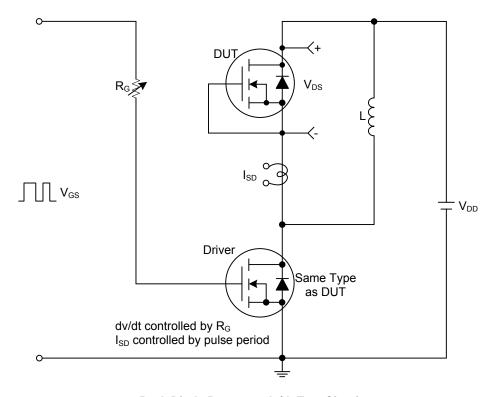
- Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

 Absolute maximum ratings are stress ratings only and functional device operation is not implied.
 - 2. Repetitive Rating: Pulse width limited by maximum junction temperature.
 - 3. L=0.1mH, I_{AS} =42A, V_{DD} =50V, R_{G} =25 Ω , Starting T_{J} = 25 $^{\circ}$ C.
 - 4. $I_{SD} \le 30A$, di/dt $\le 200A/\mu s$, $V_{DD} \le V_{(BR)DSS}$, $T_J = 25$ °C.

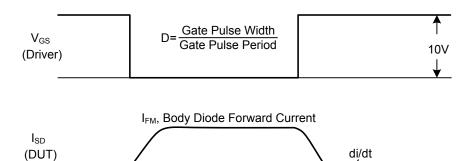
■ THERMAL CHARACTERISTICS

PARAMETER	SYMBOL	RATINGS	UNIT	
Junction to Ambient	θ_{JA}	62.5	°C/W	
Junction to Case	θ _{JC}	0.42	°C/W	

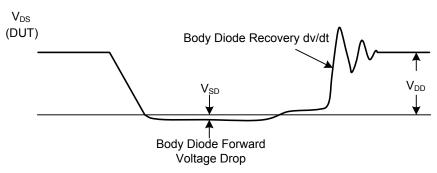
■ ELECTRICAL CHARACTERISTICS (T_J =25°C, unless otherwise specified)


PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS							
Drain-Source Breakdown Voltage		BV _{DSS}	I _D =250μA, V _{GS} =0V	80			V
Drain-Source Leakage Current		I _{DSS}	V _{DS} =80V, V _{GS} =0V			1	μΑ
Gate-Source Leakage Current	Forward		V _{GS} =+20V, V _{DS} =0V			+100	nA
	Reverse	I_{GSS}	V _{GS} =-20V, V _{DS} =0V			-100	nA
ON CHARACTERISTICS							
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_D=250\mu A$	2.0		4.0	V
Static Drain-Source On-State Resistance		R _{DS(ON)}	V _{GS} =10V, I _D =60A			5.1	mΩ
DYNAMIC PARAMETERS							
Input Capacitance		C _{ISS}			4360		pF
Output Capacitance		Coss	V_{GS} =0V, V_{DS} =25V, f=1.0MHz		595		pF
Reverse Transfer Capacitance		C_{RSS}			260		pF
SWITCHING PARAMETERS							
Total Gate Charge (Note 1)		Q_G	V _{DS} =50V, V _{GS} =10V, I _D =1.3A,		260		nC
Gate to Source Charge		Q_GS	$I_D=100\mu A$ (Note 1, 2)		30		nC
Gate to Drain Charge		Q_GD	10-100μA (Note 1, 2)		45		nC
Turn-on Delay Time (Note 1)		t _{D(ON)}			190		ns
Rise Time		t_R	V_{DS} =30V, V_{GS} =10V, I_{D} =0.5A,		220		ns
Turn-off Delay Time		t _{D(OFF)}	R _G =25Ω (Note 1, 2)		650		ns
Fall-Time		t⊧			340		ns
SOURCE- DRAIN DIODE RATING	S AND CH	ARACTERIS'	TICS				
Maximum Body-Diode Continuous Current		Is				170	Α
Maximum Body-Diode Pulsed Current		I _{SM}				680	Α
Drain-Source Diode Forward Voltage (Note 1)		V_{SD}	I _S =40A, V _{GS} =0V			1.0	V
Reverse Recovery Time (Note 1)		t _{rr}	I _S =30A, V _{GS} =0V,		45		nS
Reverse Recovery Charge		Q _{rr}	dI _F /dt=100A/μs		53		nC

Notes: 1. Pulse Test: Pulse width ≤ 300µs, Duty cycle≤2%.

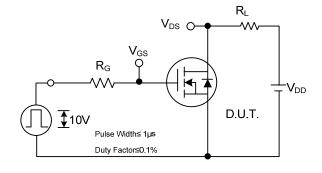

2. Essentially independent of operating temperature.

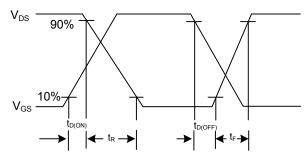
■ TEST CIRCUITS AND WAVEFORMS



Peak Diode Recovery dv/dt Test Circuit

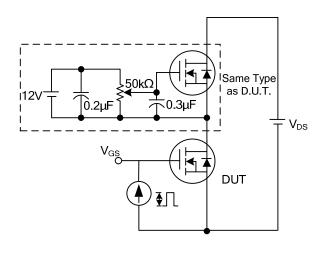
Body Diode Reverse Current

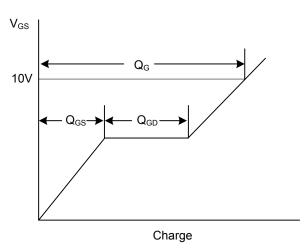

 I_{RM}



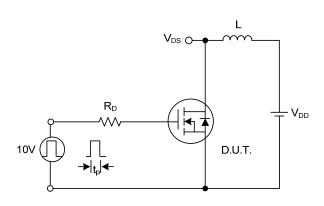
Peak Diode Recovery dv/dt Test Circuit and Waveforms

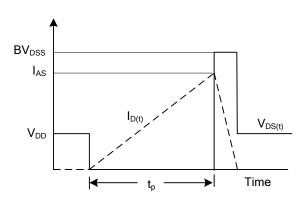
Peak Diode Recovery dv/dt Waveforms


■ TEST CIRCUITS AND WAVEFORMS



Switching Test Circuit


Switching Waveforms



Gate Charge Test Circuit

Gate Charge Waveform

Unclamped Inductive Switching Test Circuit

Unclamped Inductive Switching Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

