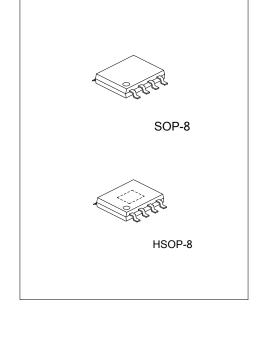


UNISONIC TECHNOLOGIES CO., LTD

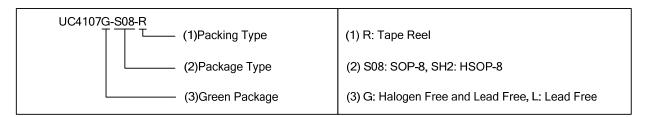
UC4107 Preliminary CMOS IC

TWO-STAGE HYSTERETIC LED DRIVER CONTROLLER

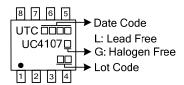

DESCRIPTION

The UTC **UC4107** is a two-stage controller with dual gate drivers consist of a Boost converter and a Buck converter. The advantage of the two-stage topology is highly compatible with Electronic Transformer in MR16/AR111 lighting market field applications.

The UTC **UC4107** is equipped with dual output gate drivers for external power MOSFETs, suitable for higher power applications.

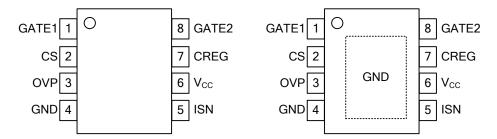

■ FEATURES

- * Topology: Boost+Buck
- * Input Voltage Range: 4.5V~40V
- * Adjustable Peak Input Current Control
- * Adjustable Boost Output Voltage
- * Independent Dual Stage Function
- * Adjustable LED Current
- * LED Current Accuracy: ±5%
- * Input Under Voltage Lockout Detection
- * Thermal Shutdown Protection



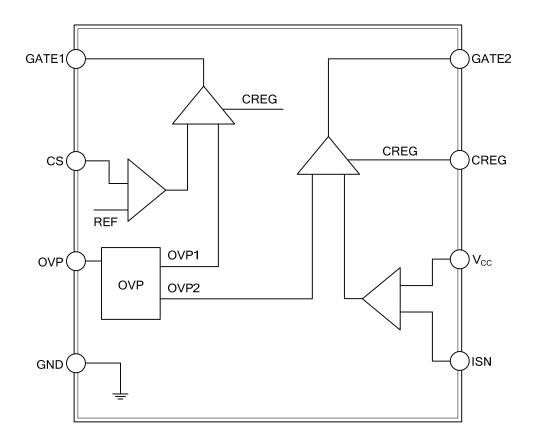
ORDERING INFORMATION

Ordering Number		Dookogo	Dooking	
Lead Free	Halogen Free	Package	Packing	
UC4107L-S08-R	UC4107G-S08-R	SOP-8	Tape Reel	
UC4107L-SH2-R	UC4107G-SH2-R	HSOP-8	Tape Reel	



MARKING

<u>www.unisonic.com.tw</u> 1 of 4


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	GATE1	Gate Driver Output for External MOSFET Switch in the First Stage.
2	CS	Current Sense Input for External MOSFET Switch.
3	OVP	Over Voltage Protection Sense Input.
4	GND	Ground.
5	ISN	LED Current Sense Amplifier Negative Input.
6	V _{CC}	Supply Voltage Input. For good bypass, place a ceramic capacitor near the VCC pin.
7	CREG	Internal Regulator Output. Place an 1µF capacitor between the CREG and GND pins.
8	GATE2	Gate Driver Output for External MOSFET Switch in the Second Stage.

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING (T_A=25°C, unless otherwise specified)

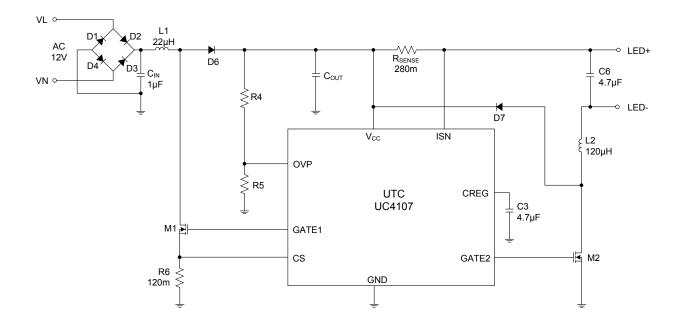
PARAMETER	SYMBOL	RATINGS	UNIT
Supply Input Voltage, V _{CC} to GND		-0.3 ~ 45	V
CS, GATE1, GATE2, CREG, OVP to GND		-0.3 ~ 6	V
V _{CC} To ISN	V _{ISN}	-1 ~ 3	V
Power Dissipation, @ T _A =25°C	P_{D}	0.53	W
Junction Temperature	T_J	+150	°C
Storage Temperature Range	T _{STG}	-65 ~ +150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Input Voltage	Vcc	4.5 ~ +40	V
Junction Temperature Range	T_J	-40 ~ +125	°C
Ambient Temperature Range	T _A	-40 ~ +85	°C

■ THERMAL DATA


PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	188	°C/W

■ ELECTRICAL CHARACTERISTICS

(V_{CC} =10V, No Load, C_{LOAD} =1nF, T_{A} =25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
CREG UVLO_ON	V _{UVOL_ON}	CS/OVP=0V	4	4.3	4.6	V
CREG UVLO_OFF	V _{UVOL OFF}	CS/OVP=0V		4.2		V
V _{CC} Shutdown Current	I _{SHDN}	Before Start-Up, V _{CC} =3.5V		10		μΑ
V _{CC} Quiescent Current	ΙQ	After Start-Up, V _{CC} =5V, GATE1 and GATE2 Stand Still		1.5		mA
Internal Reference Voltage	V_{CREG}			5		V
Internal Reference Voltage		I _{CREG} =20mA		4.9		V
CS Threshold Voltage	V _{CS}		215	240	265	mV
CS Pin Leakage Current	I _{CS}			1		μΑ
OVP High Level	V _{OVP_H}		1.71	1.9	2.09	V
OVP Low Level	V_{OVP_L}		1.44	1.6	1.76	V
OVP Pin Leakage Current	I _{OVP}			1		μΑ
GATE1 Duty Off-Time				1.5		μs
UGATE1 Drive Sink	R _{UGATE1sk}	Sink=50mA		2		Ω
LGATE1 Drive Source	R _{LGATE1sr}	Source=-50mA		1.25		Ω
GATE1 Default Pull Down Resistor				90		kΩ
ISN Threshold	V_{ISN}		123.5	130	136.5	mV
ISN Hysteresis	ΔV_{ISN}		10	15	20	%
ISN Pin Leakage Current	I _{ISN}			1		μΑ
UGATE2 Drive Sink	R _{UGATE2sk}	Sink=50mA		2		Ω
LGATE2 Drive Source	R _{LGATE2sr}	Source=-50mA		1.25		Ω
GATE2 Default Pull Down Resistor				90		kΩ
Thermal Shutdown Temperature	T _{SD}		140	155	170	°C
Thermal Shutdown Hysteresis	ΔT_{SD}			35		°C

■ TYPICAL APPLICATION CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.