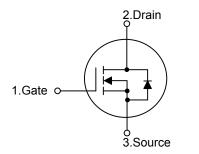


2N60Q-TA

Preliminary

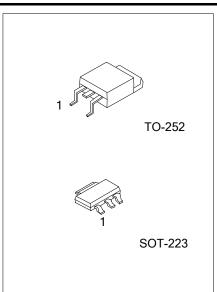
2A, 600V N-CHANNEL POWER MOSFET


DESCRIPTION

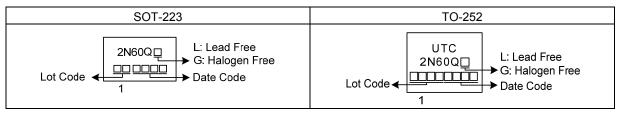
The UTC **2N60Q-TA** is a high voltage MOSFET and is designed to have better characteristics, such as fast switching time, low gate charge, low on-state resistance and have a high rugged avalanche characteristics. This power MOSFET is usually used at high speed switching applications in power supplies, PWM motor controls, high efficient DC to DC converters and bridge circuits.

FEATURES

- * $R_{DS(ON)} \le 12 \ \Omega \ @ V_{GS} = 10V, I_D = 1.0A$
- * High Switching Speed
- * 100% Avalanche Tested


SYMBOL

ORDERING INFORMATION


Ordering Number		Dealiana	Pin	Assignm	Decking		
Lead Free	Halogen Free	Package	1	2	3	Packing	
2N60QL-AA3-R	2N60QG-AA3-R	SOT-223	G	D	S	Tape Reel	
2N60QL-TN3-R	2N60QG-TN3-R	TO-252	G	D	S	Tape Reel	
Note: Pin Assignment: G: Gate D: Drain S: Source							

2N60Q <u>G</u> - <u>AA3</u> - <u>R</u>		
	(1)Packing Type	(1) R: Tape Reel
	(2)Package Type	(2) AA3: SOT-223, TN3: TO-252
	(3)Green Package	(3) G: Halogen Free and Lead Free, L: Lead Free

MARKING

ABSOLUTE MAXIMUM RATINGS (Tc=25°C, unless otherwise specified)

PAR	AMETER	SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V _{DSS}	600	V
Gate-Source Voltage		V _{GSS}	±30	V
Drain Current	Continuous (T _C =28	5°C) I _D	2	А
	Pulsed (Note 2)	I _{DM}	4	А
Avalanche Energy	Single Pulsed	E _{AS}	36.3	mJ
Peak Diode Recovery dv/d	t (Note 4)	dv/dt	4.7	V/ns
SOT-223		3	2.1	W
Power Dissipation (T _C =25°	Dissipation (T _C =25°C) TO-252 P_D 32		32	W
unction Temperature		TJ	+150	°C
Storage Temperature		T _{STG}	-55 ~ +150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

2. Repetitive Rating: Pulse width limited by maximum junction temperature.

3. L=30mH, I_{AS}=1.5A, V_{DD}=80V, R_G=25 Ω , Starting T_J = 25°C

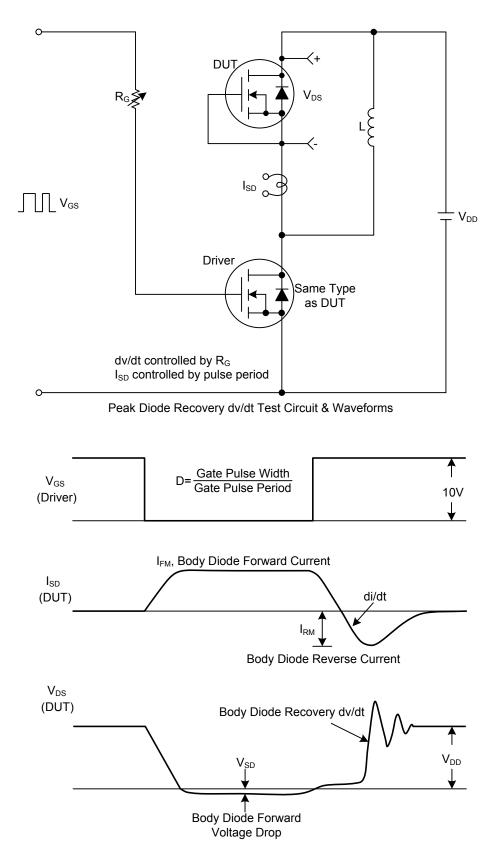
4. I_{SD}≤2.0A, di/dt≤200A/µs, V_{DD}≤BV_{DSS}, Starting T_J=25°C

THERMAL DATA

PARAMETER		SYMBOL	RATINGS	UNIT
lunction to Ambient	SOT-223	0	160	°C/W
Junction to Ambient	TO-252	θ _{JA}	110	°C/W
hunstion to Open	SOT-223	0	59.5	°C/W
Junction to Case	TO-252	θις	3.9	°C/W

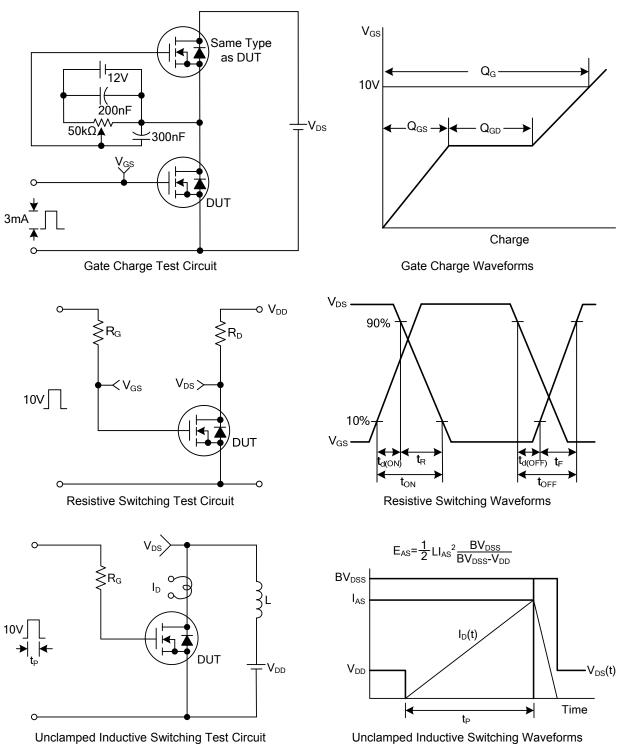
Note: Device mounted on FR-4 substrate PC board, 2oz copper, with 1inch square copper plate.

■ ELECTRICAL CHARACTERISTICS (T_c=25°C, unless otherwise noted)


PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
OFF CHARACTERISTICS								
Drain-Source Breakdown Voltage		BV _{DSS}	I _D =250μA, V _{GS} =0V	600			V	
Drain-Source Leakage Current		I _{DSS}	V _{DS} =600V, V _{GS} =0V			10	μA	
Cata Sauraa Laakaga Currant	- orward		V _{GS} =+30V, V _{DS} =0V			+100	nA	
Gate- Source Leakage Current	Reverse	I _{GSS}	V _{GS} =-30V, V _{DS} =0V			-100	nA	
ON CHARACTERISTICS	ON CHARACTERISTICS							
Gate Threshold Voltage		V _{GS(TH)}	V _{DS} =V _{GS} , I _D =250µA	2.0		4.0	V	
Static Drain-Source On-State Res	sistance	R _{DS(ON)}	V _{GS} =10V, I _D =1.0A			12	Ω	
DYNAMIC PARAMETERS								
Input Capacitance	nput Capacitance				133.8		рF	
Output Capacitance		C _{OSS}	V _{GS} =0V, V _{DS} =25V, f=1.0MHz		21.1		рF	
Reverse Transfer Capacitance	Reverse Transfer Capacitance				3.3		рF	
SWITCHING PARAMETERS								
Total Gate Charge		Q_{G}	V_{DS} =480V, V_{GS} =10V, I_{D} =2.0A,		10.1		nC	
Gate to Source Charge		Q_{GS}			3.9		nC	
Gate to Drain Charge		Q_{GD}	I _G = 1mA (Note 1, 2)		2		nC	
Turn-ON Delay Time		t _{D(ON)}			4.2		ns	
Rise Time		t _R	V_{DD} =100V, V_{GS} =10V, I_D =2.0A, R _G =25Ω (Note 1, 2)		14.9		ns	
Turn-OFF Delay Time		t _{D(OFF)}			16.1		ns	
Fall-Time		t⊨			26.5		ns	
SOURCE- DRAIN DIODE RATIN	GS AND	CHARACTER	ISTICS					
Maximum Body-Diode Continuous Current		ls				2	А	
Maximum Body-Diode Pulsed Current		I _{SM}				4	А	
Drain-Source Diode Forward Volta	age	V _{SD}	I _S =2.0A, V _{GS} =0V			1.4	V	
Reverse Recovery Time		t _{rr}			246.6		ns	
Reverse Recovery Charge		Q _{rr}	I _S =2.0A, V _{GS} =0V, di/dt=100A/μs		1.9		μC	
Notoo: 1. Dulao Toot: Dulao width	4 0 0 0	D 1	N0/					

Notes: 1. Pulse Test: Pulse width \leq 300µs, Duty cycle \leq 2%.

2. Essentially independent of operating temperature.



■ TEST CIRCUITS AND WAVEFORMS

TEST CIRCUITS AND WAVEFORMS

Unclamped Inductive Switching Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

