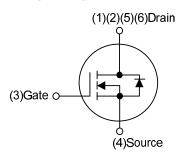

UNISONIC TECHNOLOGIES CO., LTD

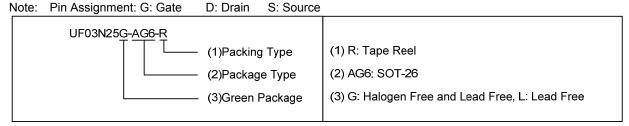
UF03N25 Power MOSFET

0.3A, 250V N-CHANNEL POWER MOSFET

■ DESCRIPTION


The UTC **UF03N25** is a high voltage power MOSFET and is designed to have better characteristics, such as fast switching time, low gate charge, low on-state resistance and have a high rugged avalanche characteristics. This power MOSFET is usually used at high speed switching applications in power supplies, PWM motor controls, high efficient DC to DC converters and bridge circuits.

■ FEATURES


- * $R_{DS(ON)} \le 6.5 \Omega @ V_{GS} = 10V, I_D = 0.15A$
- * High switching speed
- * 100% avalanche tested

SYMBOL

■ ORDERING INFORMATION

Ordering Number		Dookogo	Pin Assignment					Dooking	
Lead Free	Halogen Free	Package	1	2	3	4	5	6	Packing
UF03N25L-AG6-R	UF03N25G-AG6-R	SOT-26	D	D	G	S	D	D	Tape Reel

■ MARKING

www.unisonic.com.tw 1 of 5

UF03N25 Power MOSFET

■ ABSOLUTE MAXIMUM RATINGS (T_A =25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V_{DSS}	250	V
Gate-Source Voltage		V_{GSS}	±20	V
Continuous Drain Current	Continuous	I_{D}	0.3	Α
	Pulsed	I_{DM}	1.2	Α
Avalanche Current (Note 2)		I_{AR}	0.6	Α
Avalanche Energy		E _{AS}	10	mJ
Peak Diode Recovery dv/dt (Note 4)		dv/dt	1.4	V/ns
Power Dissipation		P_{D}	0.3	W
Junction Temperature		T_J	+150	°C
Storage Temperature Range		T_{STG}	-55 ~ + 150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

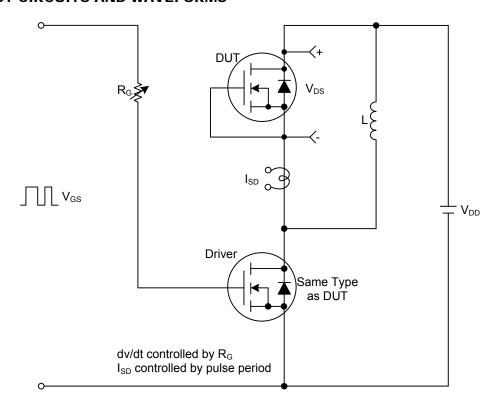
Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 3. L=55mH, I_{AS} =0.6A, V_{DD} =50V, R_{G} =25 Ω , Starting T_{J} = 25°C
- 4. $I_{SD} \le 0.3A$, di/dt $\le 200A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25^{\circ}C$

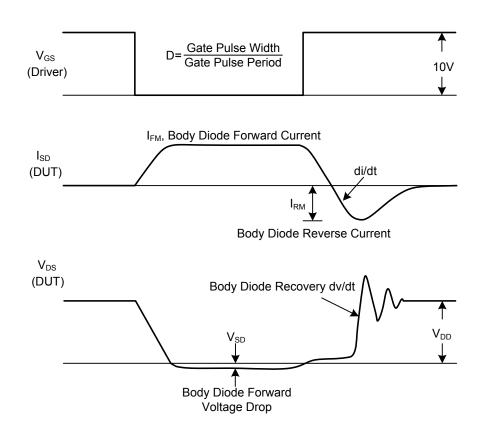
■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT		
Junction to Ambient	θ_{JA}	416	°C/W		
Junction to Case	θ_{JC}	110	°C/W		

■ ELECTRICAL CHARACTERISTICS (T_A =25°C, unless otherwise specified)

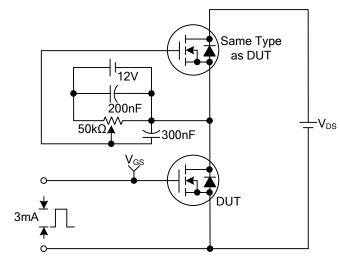

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS							
Drain-Source Breakdown Voltage		BV _{DSS}	I_D =250 μ A, V_{GS} =0 V	250			V
Drain-Source Leakage Current		I _{DSS}	V _{DS} =250V			10	μΑ
Gate-Source Leakage Current	Forward		V _{GS} =+20V, V _{DS} =0V			10	μΑ
	Reverse	I _{GSS}	V _{GS} =-20V, V _{DS} =0V			-10	μΑ
ON CHARACTERISTICS							
Gate Threshold Voltage		$V_{GS(TH)}$	I _D =250μA			2.0	V
Static Drain-Source On-State Resist	R _{DS(ON)}	V _{GS} =10V, I _D =0.15A			6.5	Ω	
DYNAMIC PARAMETERS							
Input Capacitance		C _{ISS}			56.6		рF
Output Capacitance		Coss	V _{GS} =0V, V _{DS} =25V, f=1MHz		20.2		pF
Reverse Transfer Capacitance		C_{RSS}			9		pF
SWITCHING PARAMETERS							
Total Gate Charge (Note 1)		Q_G	\\ -10\\ \\ -50\\ -1.2A		5.5		nC
Gate to Source Charge		Q_GS	V _{GS} =10V, V _{DS} =50V, I _D =1.3A I _G =100μA (Note 1, 2)		0.24		nC
Gate to Drain Charge		Q_GD	I _G -100μA (Note 1, 2)		0.84		nC
Turn-ON Delay Time (Note 1)		t _{D(ON)}			16.8		ns
Rise Time		t _R	V_{GS} =10V, V_{DD} =30V, R_{G} =25 Ω ,		19.2		ns
Turn-OFF Delay Time		t _{D(OFF)}	I _D =0.5A (Note 1, 2)		58.8		ns
Fall-Time		t _F			50		ns
SOURCE- DRAIN DIODE RATINGS	S AND CHA	RACTERISTI	CS				
Maximum Body-Diode Continuous C	Current	Is				0.3	Α
laximum Body-Diode Pulsed Current		I _{SM}				1.2	Α
Drain-Source Diode Forward Voltage (Note 1)		V_{SD}	I _S =0.3A			1.3	V
Body Diode Reverse Recovery Time (Note 1)		t _{rr}	I _S =0.2A, V _{GS} =0V,		100		ns
Body Diode Reverse Recovery Charge		Q _{rr}	dI _F /dt = 100A/μs		104		nC

Notes: 1. Pulse Test: Pulse width ≤ 300µs, Duty cycle ≤ 2%.


2. Essentially independent of operating temperature.

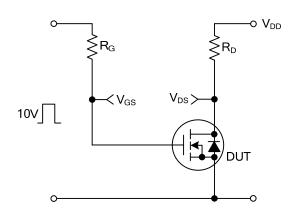
UF03N25

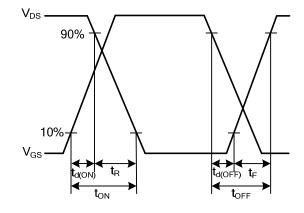
■ TEST CIRCUITS AND WAVEFORMS



Peak Diode Recovery dv/dt Test Circuit

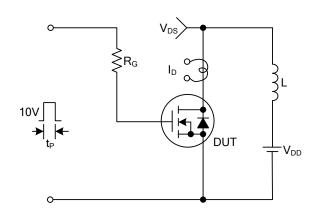
Peak Diode Recovery dv/dt Waveforms

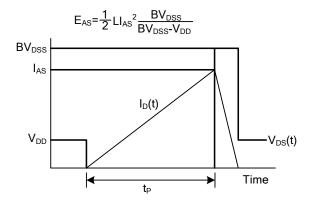

■ TEST CIRCUITS AND WAVEFORMS



10V Q_G Q_{GD} Charge

Gate Charge Test Circuit


Gate Charge Waveforms



Resistive Switching Test Circuit

Resistive Switching Waveforms

Unclamped Inductive Switching Test Circuit

Unclamped Inductive Switching Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.