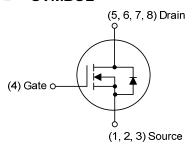


UNISONIC TECHNOLOGIES CO., LTD

UF7832 Preliminary Power MOSFET

20A, 30V N-CHANNEL POWER MOSFET

■ DESCRIPTION

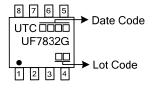

The UTC **UF7832** is an N-channel Power MOSFET, it uses UTC's advanced technology to provide the customers with low Rdson characteristic by high cell density trench technology.

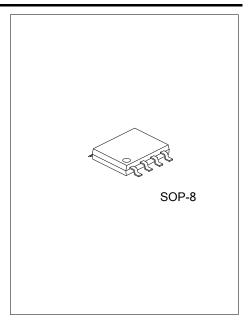
The UTC **UF7832** is suitable for high frequency DC-DC converters with synchronous rectification applications.

■ FEATURES

- * $R_{DS(ON)}$ < 4.0m Ω @ V_{GS} =10V, I_{D} =10A $R_{DS(ON)}$ < 5.5m Ω @ V_{GS} =4.5V, I_{D} =16A
- * High Power and Current Handling Capability
- * High Cell Density Trench Technology

■ SYMBOL


ORDERING INFORMATION


Ordering Number	Package	Pin Assignment								Dealine	
		1	2	3	4	5	6	7	8	Packing	
UF7832G-S08-R	SOP-8	S	S	S	G	D	D	D	D	Tape Reel	

Note: Pin Assignment: S: Source G: Gate D: Drain

UF7832G-S08-R
(1)Packing Type (1) R: Tape Reel
(2) S08: SOP-8
(3)Green Package (3) G: Halogen Free and Lead Free

■ MARKING

■ **ABSOLUTE MAXIMUM RATINGS** (T_C=25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT	
Drain-Source Voltage		V_{DSS}	30	V	
Gate-Source Voltage		V_{GSS}	±20	V	
Continuous Drain Current	Continuous	I _D	20	Α	
Pulsed Drain Current	Pulsed (Note 2)	I _{DM}	80	Α	
Avalanche Current (Note 3)		I _{AR}	16	Α	
Avalanche energy	Single Pulsed (Note 3)	E _{AS}	256	mJ	
Peak Diode Recovery dv/dt (Note 4)		dv/dt	2.0	V/ns	
Power Dissipation		P _D	3.5	W	
Junction Temperature		TJ	+150	°C	
Storage Temperature Range		T _{STG}	-55 ~ +150	°C	

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

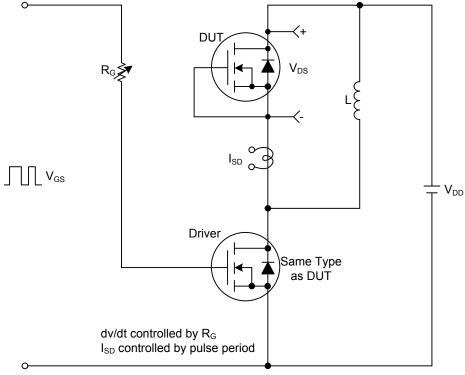
Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 3. L=2.0mH, I_{AS}=16A, V_{DD}=50V, R_G=25 Ω , Starting T_J = 25 $^{\circ}$ C.
- 4. $I_{SD} \le 20A$, $di/dt \le 200A/\mu s$, $V_{DD} \le V_{(BR)DSS}$, $T_J = 25$ °C.

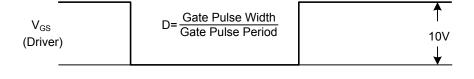
■ THERMAL DATA

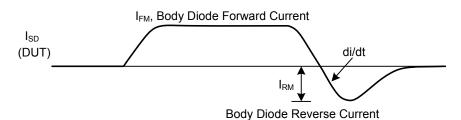
PARAMETER	SYMBOL	RATING	UNIT	
Junction to Ambient	θ_{JA}	50	°C/W	
Junction to Case	θ_{JC}	35.7	°C/W	

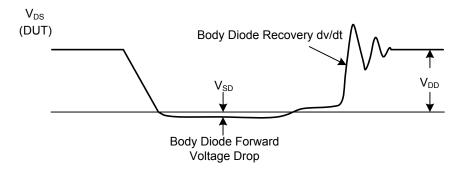
■ ELECTRICAL CHARACTERISTICS

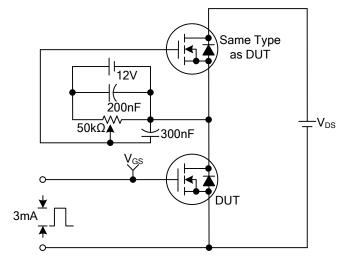

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT			
OFF CHARACTERISTICS									
Drain-Source Breakdown Voltage	BV _{DSS}	I _D =250μA, V _{GS} =0V	30			V			
Drain-Source Leakage Current	I _{DSS}	V _{DS} =24V, V _{GS} =0V			1	μA			
Coto Source Logicore Current Forward		V _{GS} =+20V, V _{DS} =0V			100	nA			
Gate-Source Leakage Current Reverse	I _{GSS}	V _{GS} =-20V, V _{DS} =0V			-100	nA			
ON CHARACTERISTICS									
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1.0		2.5	V			
Otatia Basia Garage On Otata Basiatana		V _{GS} =10V, I _D =20A			4.0	mΩ			
Static Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =4.5V, I _D =16A			5.5	mΩ			
DYNAMIC PARAMETERS									
Input Capacitance	C _{ISS}			4150		pF			
Output Capacitance	Coss	V _{GS} =0V, V _{DS} =25V, f=1MHz		760		pF			
Reverse Transfer Capacitance	C _{RSS}			700		pF			
SWITCHING PARAMETERS									
Total Gate Charge (Note 1)	Q_{G}	V _{DS} = 50V, V _{GS} =10V,		34		nC			
Gate to Source Charge	Q_GS	I _D =1.3A, I _G =100μA		8.6		nC			
Gate to Drain Charge	Q_GD	(Note 1, 2)		12		nC			
Turn-on Delay Time (Note 1)	t _{D(ON)}			88		ns			
Rise Time	t _R	V_{DS} =30V, V_{GS} =10V, I_{D} =0.5A,		352		ns			
Turn-off Delay Time	t _{D(OFF)}	R _G =25Ω (Note 1, 2)		1620		ns			
Fall-Time	t _F			1060		ns			
SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS									
Maximum Body-Diode Continuous Current	Is				20	Α			
Maximum Body-Diode Pulsed Current	I _{SM}				80	Α			
Drain-Source Diode Forward Voltage (Note 1)	V _{SD}	I _S =16A, V _{GS} =0V			1.0	V			
Reverse Recovery Time (Note 1)	t _{rr}	I _F =20A, V _{GS} =0V,		500		nS			
Reverse Recovery Charge	Q _{rr}	d _I /dt=100A/µs		1.5		μC			

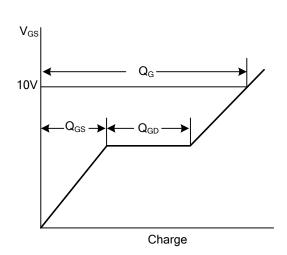
Notes: 1. Pulse Test: Pulse width \leq 300 μ s, Duty cycle \leq 2%.

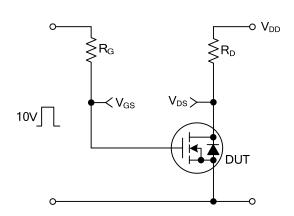

2. Essentially independent of operating temperature.

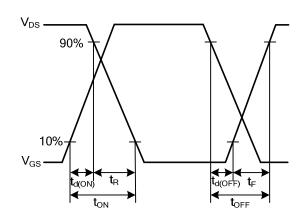


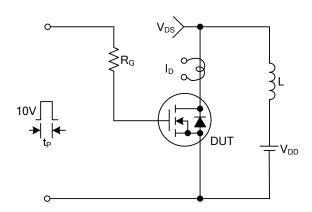

■ TEST CIRCUITS AND WAVEFORMS

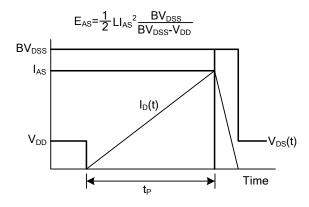

Peak Diode Recovery dv/dt Test Circuit & Waveforms




■ TEST CIRCUITS AND WAVEFORMS (Cont.)


Gate Charge Test Circuit


Gate Charge Waveforms


Resistive Switching Test Circuit

Resistive Switching Waveforms

Unclamped Inductive Switching Test Circuit

Unclamped Inductive Switching Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

