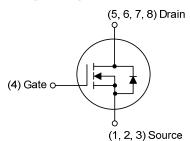


UNISONIC TECHNOLOGIES CO., LTD

UF7464 Power MOSFET

3A, 200V N-CHANNEL ENHANCEMENT MODE TRENCH POWER MOSFET

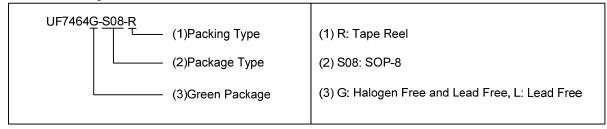
■ DESCRIPTION

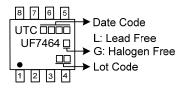

The UTC **UF7464** is a N-channel Power MOSFET, it uses UTC's advanced technology to provide the customers with low $R_{DS(ON)}$ characteristic by high cell density trench technology.

The UTC **UF7464** is suitable for high efficiency synchronous rectification in SMPS, UPS, hard switched and high frequency circuits.

■ FEATURES

- * $R_{DS(ON)} \le 0.2 \Omega @ V_{GS} = 10V, I_D = 1.5A$
- * High switching speed
- * 100% avalanche tested




■ ORDERING INFORMATION

Ordering Number		Deelvere	Pin Assignment							Dooking	
Lead Free	Halogen Free	Package	1	2	3	4	5	6	7	8	Packing
UF7464L-S08-R	UF7464G-S08-R	SOP-8	S	S	S	G	D	D	D	D	Tape Reel

Note: Pin Assignment: S: Source G: Gate D: Drain

■ MARKING

SOP-8

<u>www.unisonic.com.tw</u> 1 of 5

UF7464 Power MOSFET

■ **ABSOLUTE MAXIMUM RATINGS** (T_C=25°C, unless otherwise specified)

PARAMETE	R	SYMBOL	RATINGS	UNIT	
Drain-Source Voltage		$V_{ extsf{DSS}}$	200	V	
Gate-Source Voltage		V_{GSS}	±20	V	
Continuous Drain Current	Continuous	I _D	3	Α	
Pulsed Drain Current Pulsed (Note 2)		I _{DM}	12	Α	
Peak Diode Recovery dv/dt (Note 3)		dv/dt	4.3	V/nS	
Power Dissipation		P _D	8.0	W	
Junction Temperature		TJ	+150	°C	
Storage Temperature Range		T _{STG}	-55 ~ +150	°C	

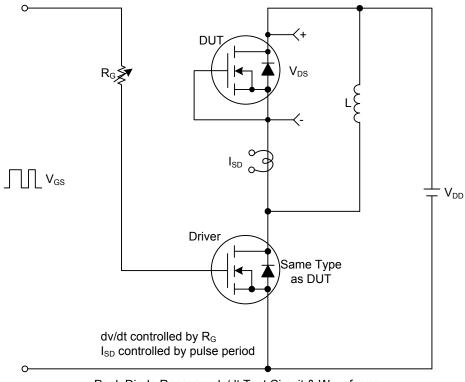
Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 3. $I_{SD} \le 1.0 A$, $di/dt \le 200 A/\mu s$, $V_{DD} \le V_{(BR)DSS}$, $T_J = 25 ^{\circ} C$.

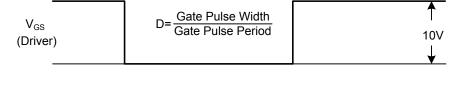
■ THERMAL DATA

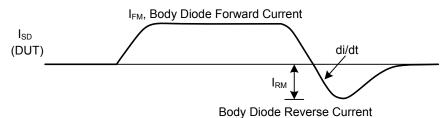
PARAMETER	SYMBOL	RATING	UNIT		
Junction to Ambient	θ_{JA}	90	°C/W		
Junction to Case	θ _{JC}	15.6	°C/W		

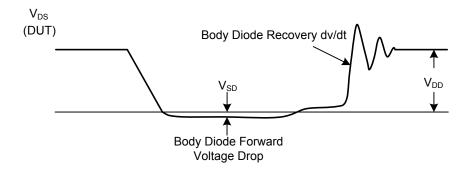
Note: The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.

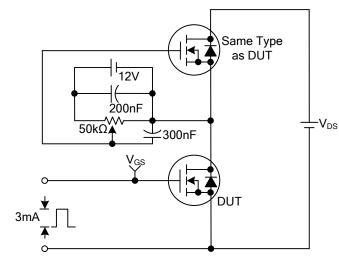

■ ELECTRICAL CHARACTERISTICS

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
OFF CHARACTERISTICS									
Drain-Source Breakdown Voltage		BV_{DSS}	I _D =250μA, V _{GS} =0V	200			V		
Drain-Source Leakage Current		I_{DSS}	V _{DS} =160V, V _{GS} =0V			10	μΑ		
Gate-Source Leakage Current	Forward		V _{GS} =+20V, V _{DS} =0V			100	nA		
	Reverse	I_{GSS}	V _{GS} =-20V, V _{DS} =0V			-100	nA		
ON CHARACTERISTICS									
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2.0		4.0	V		
Static Drain-Source On-State Resistance		R _{DS(ON)}	V _{GS} =10V, I _D =1.5A			0.2	Ω		
DYNAMIC PARAMETERS									
Input Capacitance		C_{ISS}			1520		pF		
Output Capacitance		Coss	V_{GS} =0V, V_{DS} =25V, f=1MHz		155		pF		
Reverse Transfer Capacitance		C_{RSS}			13		pF		
SWITCHING PARAMETERS									
Total Gate Charge (Note 1)		Q_G			34		nC		
Gate to Source Charge		Q_GS	V_{DS} =160V, V_{GS} =10V, I_{D} =3A		8		nC		
Gate to Drain Charge		Q_GD	I _G =1mA (Note 1, 2)		5		nC		
Turn-on Delay Time (Note 1)		$t_{D(ON)}$			12		ns		
Rise Time		t_R	V_{DD} =100V, V_{GS} =10V, I_{D} =3A		18		ns		
Turn-off Delay Time		$t_{D(OFF)}$	R _G =25Ω (Note 1, 2)		105		ns		
Fall-Time		t_{F}			28		ns		
SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS									
Maximum Body-Diode Continuou	us Current	I_S				3	Α		
Maximum Body-Diode Pulsed Cu	urrent	I _{SM}				12	Α		
Drain-Source Diode Forward Vol	tage (Note 1)	V_{SD}	I _S =3.0A			1.3	V		
Reverse Recovery Time (Note 1))	t _{rr}	I _S =3.0A, V _{GS} =0V,		80		nS		
Reverse Recovery Charge		Q_{rr}	dI _F /dt=100A/μs		420		nC		


Notes: 1. Pulse Test: Pulse width ≤ 300µs, Duty cycle ≤ 2%.


2. Essentially independent of operating temperature.


■ TEST CIRCUITS AND WAVEFORMS

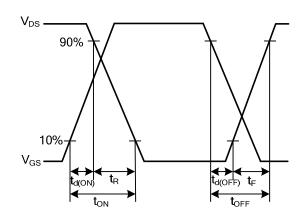

Peak Diode Recovery dv/dt Test Circuit & Waveforms

■ TEST CIRCUITS AND WAVEFORMS (Cont.)

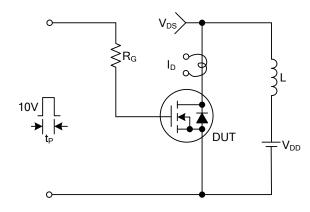
Charge

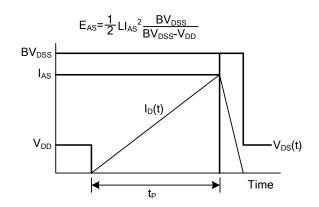
 Q_{GS}

 V_{GS}


10V

Gate Charge Test Circuit


Gate Charge Waveforms


Resistive Switching Test Circuit

Resistive Switching Waveforms

Unclamped Inductive Switching Test Circuit

Unclamped Inductive Switching Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.