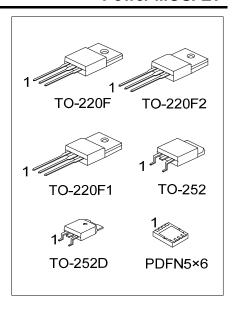
UNISONIC TECHNOLOGIES CO., LTD

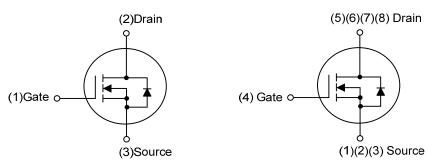
UNA10R180H

Power MOSFET

42A, 100V N-CHANNEL POWER MOSFET


■ DESCRIPTION

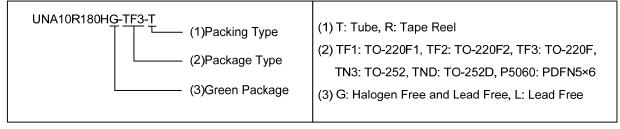
The UTC **UNA10R180H** is a N-Channel enhancement MOSFET, it uses UTC's advanced technology to provide customers with a minimum on-state resistance and high switching speed.


The UTC ${\bf UNA10R180H}$ is suitable for use in a wide variety of applications.

■ FEATURES

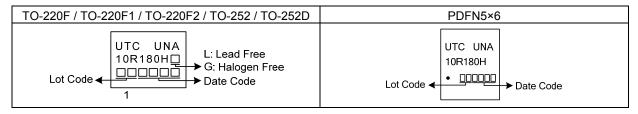
- * $R_{DS(ON)} \le 18 \text{ m}\Omega$ @ $V_{GS}=10V$, $I_{D}=33A$
- * High switching speed

■ SYMBOL


TO-220/TO-220F/TO-220F1 TO-220F2/TO-251/TO-252/TO-252D

PDFN5×6

■ ORDERING INFORMATION


Ordering Number		Dookooo	Pin Assignment						Daaldaa		
Lead Free	Halogen Free	Package	1	2	3	4	5	6	7	8	Packing
UNA10R180HL-TF1-T	UNA10R180HG-TF1-T	TO-220F1	G	D	S	-	-	-	-	-	Tube
UNA10R180HL-TF2-T	UNA10R180HG-TF2-T	TO-220F2	G	D	S	-	-	-	-	1	Tube
UNA10R180HL-TF3-T	UNA10R180HG-TF3-T	TO-220F	G	D	S	-	-	-	-	-	Tube
UNA10R180HL-TN3-R	UNA10R180HG-TN3-R	TO-252	G	D	S	-	-	-	-	-	Tape Reel
UNA10R180HL-TND-R	UNA10R180HG-TND-R	TO-252D	G	D	S	-	-	-	-	-	Tape Reel
UNA10R180HL-P5060-R	UNA10R180HG-P5060-R	PDFN5×6	S	S	S	G	D	D	D	D	Tape Reel

Note: Pin Assignment: G: Gate D: Drain S: Source

UNA10R180H Power MOSFET

MARKING

■ ABSOLUTE MAXIMUM RATINGS

PARAMETER		SYMBOL	RATINGS	UNIT	
Drain-Source Voltage		V_{DSS}	100	V	
Gate-Source Voltage		V_{GSS}	±20	V	
Drain Current		V _{GS} @ 10V, T _C =25°C (Silicon Limited)	I _D	56	Α
		V _{GS} @10V, T _C =100°C		39	Α
		V _{GS} @ 10V (Package Limited), T _C =25°C		42	Α
	Pulsed (Note 2)		I _{DM}	220	Α
Single Pulse Avalanche Energy Tested Value (Note 6)		E _{AS} (Tested)	200	mJ	
Power Dissipation (T_C =25°C) TO -220F/ TO -220F1 TO -220F2 TO -252/ TO -252D		TO-220F/TO-220F1 TO-220F2		30	W
		TO-252/TO-252D	P _D	140	W
		PDFN5×6		39	W
Junction Temperature		TJ	-55 ~ +175	°C	
Storage Temperature Range		T _{STG}	-55 ~ +175	°C	

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

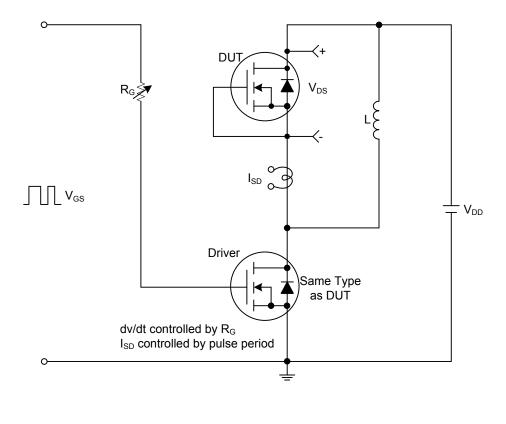
- 2. Repetitive rating; pulse width limited by maximum junction temperature.
- 3. L=0.28mH, I_{AS} =33A, V_{DD} = 10V, R_{G} =25 Ω , Starting T_{J} =25 $^{\circ}$ C
- 4. I_{SD}≤33A, di/dt≤200A/μs, V_{DD}≤BV_{DSS}, starting T_J=25°C
- 5. Limited by T_{Jmax}, see Test Circuits and Waveforms for typical repetitive avalanche performance.
- 6. This value determined from sample failure population. 100% tested to this value in production.

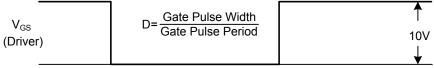
■ THERMAL CHARACTERISTICS

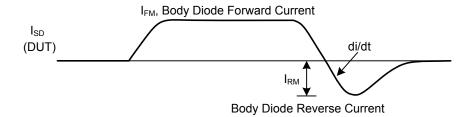
PARAMETER		SYMBOL	RATINGS	UNIT
Junction to Ambient	TO-220F/TO-220F1 TO-220F2		62.5	°C/W
	TO-252/TO-252D	θμΑ	110	°C/W
	PDFN5×6		35	°C/W
Junction to Case	TO-220F/TO-220F1 TO-220F2		4.17	°C/W
	TO-252/TO-252D	θ_{JC}	0.89	°C/W
	PDFN5×6		3.2	°C/W

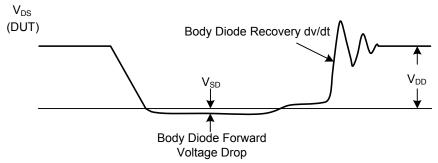
Note: The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.

UNA10R180H

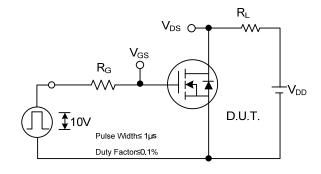

■ **ELECTRICAL CHARACTERISTICS** (T_J=25°C, unless otherwise specified)

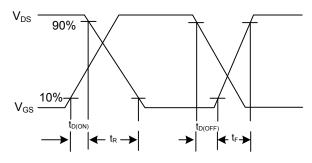

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS						
Drain-Source Breakdown Voltage	BV_{DSS} $I_D=250\mu A, V_{GS}=0V$		100			V
Drain-Source Leakage Current		V _{DS} =100V, V _{GS} =0V			20	μA
	I _{DSS}	V _{DS} =100V, V _{GS} =0V , T _J =125°C			250	μA
0-1- 0	I _{GSS}	V _{GS} =20V			200	nA
Gate-Source Leakage Current		V _{GS} =-20V			-200	nA
ON CHARACTERISTICS						
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2.0		4.0	V
Static Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =33A (Note 2)		15	18	mΩ
DYNAMIC PARAMETERS						
Input Capacitance	C _{ISS}			2930		pF
Output Capacitance	Coss	V _{GS} =0V, V _{DS} =25V, f=1.0MHz		290		pF
Reverse Transfer Capacitance	C _{RSS}			180		pF
	Coss	V _{GS} =0V, V _{DS} =1.0V, f=1.0MHz		1200		pF
Output Capacitance		V_{GS} =0V, V_{DS} =80V, f=1.0MHz		180		pF
SWITCHING PARAMETERS						
Total Gate Charge	Q_{G}	\(\(\dot{40\} \) \(\dot{40\} \)		69	100	nC
Gate to Source Charge	Q_{GS}	V_{GS} =10V, V_{DS} =30V, I_{D} =1A I_{G} =100 μ A (Note 2)		15		nC
Gate-to-Drain ("Miller") Charge	Q_{GD}			25		nC
Turn-ON Delay Time	t _{D(ON)}			14		ns
Rise Time	t _R	V_{DD} =30V, V_{GS} =10V, I_{D} =6A,		43		ns
Turn-OFF Delay Time	t _{D(OFF)}	R _G =6.8Ω (Note 2)		53		ns
Fall-Time	t _F	7		42		ns
SOURCE- DRAIN DIODE RATINGS AND	CHARACTER	RISTICS				
Continuous Source Current	,				56	Α
(Body Diode)	I _S				90	А
Pulsed Source Current	l				220	٨
(Body Diode) (Note 1)	I _{SM}				220	Α
Diode Forward Voltage	V _{SD}	T _J =25°C, I _S =33A, V _{GS} =0V (Note 2)			1.3	V
Reverse Recovery Time	t _{rr}	T _J =25°C, I _S =33A,		35	53	ns
Reverse Recovery Charge	Q _{rr}	di/dt=100A/μs, V _{DD} =50V (Note 2)		41	62	nC


Notes: 1. Repetitive rating; pulse width limited by maximum junction temperature.

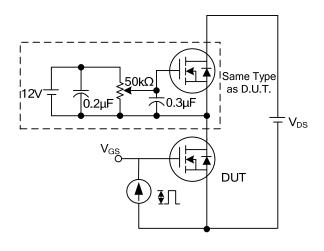

- 2. Pulse width ≤1.0ms, duty cycle ≤ 2%.
- 3. C_{OSS} eff. is a fixed capacitance that gives the same charging time as C_{OSS} while V_{DS} is rising from 0 to 80% V_{DSS} .

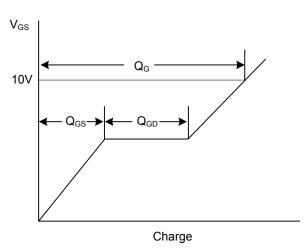
■ TEST CIRCUITS AND WAVEFORMS



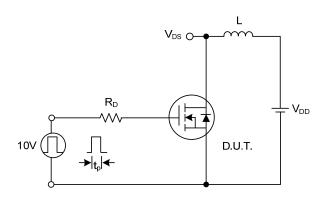


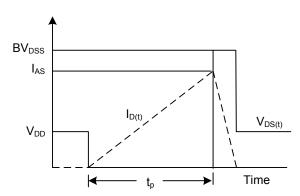
Peak Diode Recovery dv/dt Test Circuit and Waveforms


■ TEST CIRCUITS AND WAVEFORMS



Switching Test Circuit


Switching Waveforms



Gate Charge Test Circuit

Gate Charge Waveform

Unclamped Inductive Switching Test Circuit

Unclamped Inductive Switching Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

