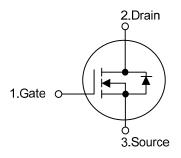
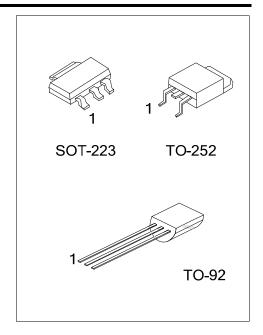


UNISONIC TECHNOLOGIES CO., LTD

1N60Q-TA Preliminary Power MOSFET

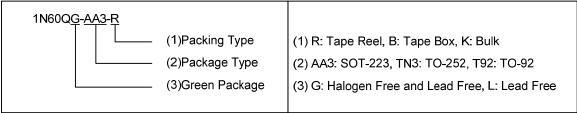
1.0A, 600V N-CHANNEL POWER MOSFET


■ DESCRIPTION


The UTC **1N60Q-TA** is a high voltage MOSFET and is designed to have better characteristics, such as fast switching time, low gate charge, low on-state resistance and have a high rugged avalanche characteristics. This power MOSFET is usually used at high speed switching applications in power supplies, PWM motor controls, high efficient DC to DC converters and bridge circuits.

■ FEATURES

- * $R_{DS(ON)} \le 9.0 \Omega @ V_{GS} = 10V, I_D = 0.5A$
- * Fast switching capability
- * Avalanche energy specified
- * Improved dv/dt capability, high ruggedness



■ ORDERING INFORMATION

Ordering Number		Dookogo	Pin Assignment			Doolsing	
Lead Free	Halogen Free	Package	1	2	3	Packing	
1N60QL-AA3-R	1N60QG-AA3-R	SOT-223	G	D	S	Tape Reel	
1N60QL-TN3-R	1N60QG-TN3-R	TO-252	G	D	S	Tape Reel	
1N60QL-T92-B	1N60QG-T92-B	TO-92	G	D	S	Tape Box	
1N60QL-T92-K	1N60QG-T92-K	TO-92	G	D	S	Bulk	

Note: Pin Assignment: G: Gate D: Drain S: Source

<u>www.unisonic.com.tw</u> 1 of 7

■ MARKING

PACKAGE	MARKING
SOT-223	L: Lead Free G: Halogen Free Lot Code Date Code
TO-252	UTC 1N60Q C: Lead Free G: Halogen Free Date Code
TO-92	UTC 1N60Q□ Code Lot Code UTC 1N60Q□ Code Date Code 1

■ **ABSOLUTE MAXIMUM RATINGS** (T_C = 25°C, unless otherwise specified)

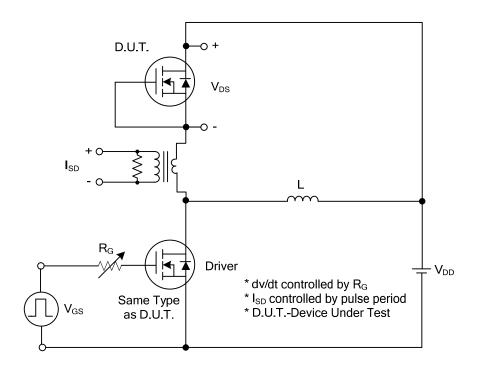
PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V_{DSS}	600	V
Gate-Source Voltage		V_{GSS}	±30	V
Continuous Danie Comment	Continuous (T _C =25°C)	I_{D}	1.0	Α
Continuous Drain Current	Pulsed (Note 2)	I_{DM}	4.0	Α
Avalanche Current (Note 2)	I_{AR}	1	Α
Avalanche Energy	Single Pulsed (Note 2)	E _{AS}	60	mJ
Peak Diode Recovery dv/d	ak Diode Recovery dv/dt (Note 4)		3.5	V/ns
Power Dissipation	SOT-223	P _D	7.8	W
	TO-252		28	W
	TO-92		1.56	W
Junction Temperature		T_J	+150	°C
Storage Temperature		T _{STG}	-55 ~ + 150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

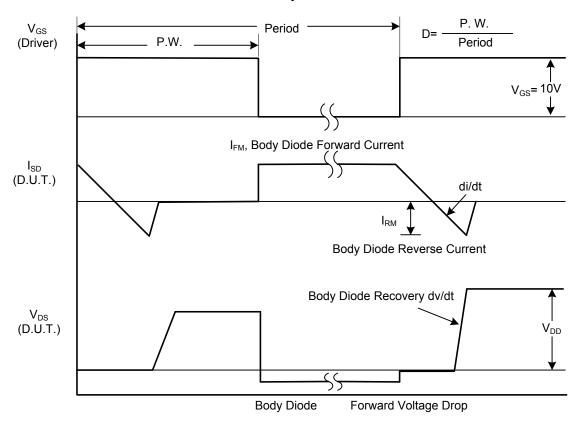
- 2. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 3. L = 120mH, I_{AS} = 1A, V_{DD} = 50V, R_G = 25 Ω , Starting T_J = 25 $^{\circ}$ C
- 4. $I_{SD} \le 1A$, di/dt $\le 200A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25^{\circ}C$

■ THERMAL RESISTANCES CHARACTERISTICS

PARAMETER		SYMBOL	RATINGS	UNIT	
Junction to Ambient	SOT-223		150	°C/W	
	TO-252	θ_{JA}	140	°C/W	
	TO-92		110	°C/W	
Junction to Case	SOT-223	$\theta_{ m JC}$	16	°C/W	
	TO-252		4.46	°C/W	
	TO-92		80	°C/W	

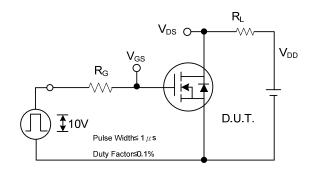

■ **ELECTRICAL CHARACTERISTICS** (T_C=25°C, unless otherwise specified.)

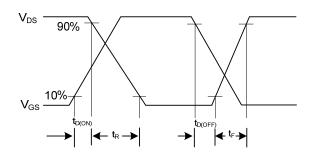
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V, I _D =250μA	600			V
Drain-Source Leakage Current	I _{DSS}	V _{DS} =600V, V _{GS} =0V			10	μA
Coto Source Lookege Current Forward		V _{GS} =30V, V _{DS} =0V			100	nA
Gate-Source Leakage Current Reverse	I _{GSS}	V_{GS} =-30V, V_{DS} =0V			-100	nA
ON CHARACTERISTICS						
Gate Threshold Voltage	V _{GS(TH)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2.0		4.0	V
Static Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =0.5A			9.0	Ω
DYNAMIC CHARACTERISTICS						
Input Capacitance	C _{ISS}			195		pF
Output Capacitance	Coss	V_{DS} =25V, V_{GS} =0V, f=1MHz		20		pF
Reverse Transfer Capacitance	C _{RSS}			3		pF
SWITCHING CHARACTERISTICS						
Total Gate Charge (Note 1)	Q_G	V _{DS} =50V, V _{GS} =10V, I _D =1.3A,		13		nC
Gate-Source Charge	Q_GS	$I_{G}=100\mu A$ (Note 1, 2)		1.3		nC
Gate-Drain Charge	Q_GD	IG-100μΑ (Note 1, 2)		1		nC
Turn-On Delay Time (Note 1)	t _{D(ON)}			28		ns
Turn-On Rise Time	t_R	V_{DD} =30V, V_{GS} =10V, I_{D} =0.5A,		19		ns
Turn-Off Delay Time	t _{D(OFF)}	R _G =25Ω(Note 1, 2)		53		ns
Turn-Off Fall Time	t _F			25		ns
SOURCE-DRAIN DIODE RATINGS AND CI	HARACTERIST	ICS				
Maximum Continuous Drain-Source Diode	Is				1	Α
Forward Current	IS				'	А
Maximum Pulsed Drain-Source Diode	la				4	Α
Forward Current	I _{SM}				4	^
Drain-Source Diode Forward Voltage (Note 1	l) V _{SD}	V_{GS} =0 V , I_S =1.0 A			1.4	V
Reverse Recovery Time (Note 1)	t _{rr}	V _{GS} = 0V, I _S = 1.0A,		200		nS
Reverse Recovery Charge	Q _{rr}	$dI_F / dt = 100A/\mu s$ (Note 1)		0.44		μC


Notes: 1. Pulse Test: Pulse width \leq 300 μ s, Duty cycle \leq 2%.

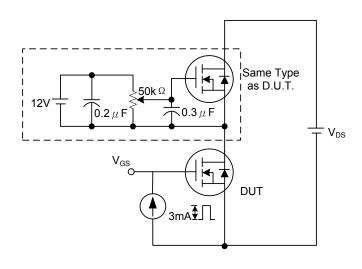
^{2.} Essentially independent of operating temperature.

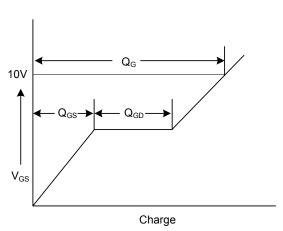
TEST CIRCUITS AND WAVEFORMS



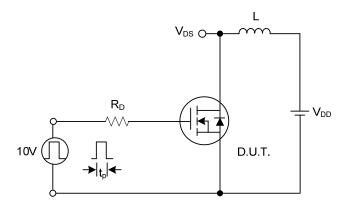

Peak Diode Recovery dv/dt Test Circuit

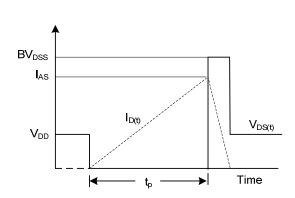
Peak Diode Recovery dv/dt Waveforms


■ TEST CIRCUITS AND WAVEFORMS (Cont.)



Switching Test Circuit


Switching Waveforms



Gate Charge Test Circuit

Gate Charge Waveform

Unclamped Inductive Switching Test Circuit

Unclamped Inductive Switching Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

