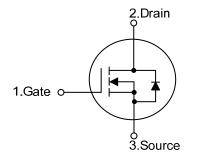


UTC UNISONIC TECHNOLOGIES CO., LTD

8N65-E

Preliminary

N-CHANNEL 8A, 650V **POWER MOSFET**


DESCRIPTION

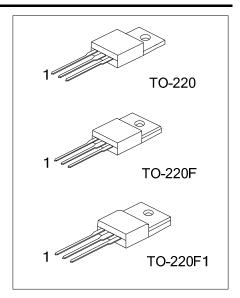
The UTC 8N65-E is a high voltage and high current power MOSFET designed to have better characteristics, such as fast switching time, low gate charge, low on-state resistance and high rugged avalanche characteristics. This power MOSFET is usually used in high speed switching applications at power supplies, PWM motor controls, high efficient DC to DC converters and bridge circuits.

FEATURES

- $* R_{DS(ON)} < 1.4 \Omega @ V_{GS} = 10 V, I_D = 4 A$
- * Fast switching capability
- * Avalanche energy specified
- * Improved dv/dt capability, high ruggedness

SYMBOL


ORDERING INFORMATION


	Ordering Number		Dookago	Pin	Assignr	Dooking		
	Lead Free	Halogen Free	Package	1	2	3	Packing	
	8N65L-TA3-T	8N65G-TA3-T	TO-220	G	D	S	Tube	
	8N65L-TF3-T	8N65G-TF3-T	TO-220F	G	D	S	Tube	
	8N65L-TF1-T	8N65G-TF1-T	TO-220F1	G	D	S	Tube	
Noto:	Note: Pin Assignment: C: Cate D: Drain S: Source							

Note: Pin Assignment: G: Gate D: Drain S: Source

8N65 <u>L</u> - <u>TA3-</u> T	
(1)Packing Type	(1) T: Tube
(2)Package Type	(2) TA3: TO-220, TF1: TO-220F1, TF3: TO-220F
(3)Green Package	(3) L: Lead Free, G: Halogen Free and Lead Free

MARKING

Preliminary

■ ABSOLUTE MAXIMUM RATINGS (T_c = 25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V _{DSS}	650	V
Gate-Source Voltage		V _{GSS}	±30	V
	Continuous	I _D	8	А
Drain Current	Pulsed (Note 2)		32	А
Avalanche Energy	Single Pulsed (Note 3)	E _{AS}	225	mJ
Peak Diode Recovery	dv/dt (Note 4)	dv/dt	2.8	V/ns
Dower Dissinction	TO-220	Р	/dt 2.8 147	W
Power Dissipation	TO-220F/TO-220F1		48	W
Junction Temperature		ΤJ	+150	°C
Operating Temperature		T _{OPR}	-55 ~ +150	°C
Storage Temperature		T _{STG}	-55 ~ +150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

2. Repetitive Rating : Pulse width limited by TJ

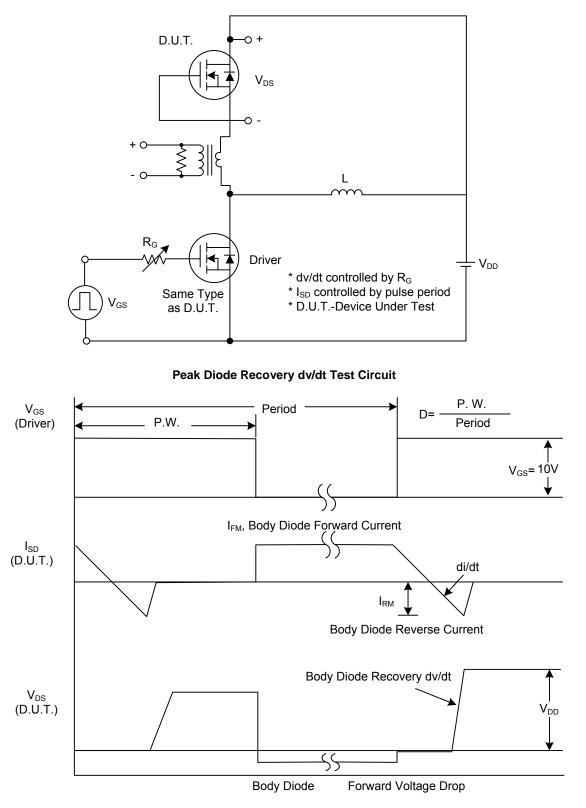
3. L=7mH, I_{AS}=8A, V_{DD}= 50V, R_G=25 Ω , Starting T_J=25°C

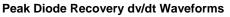
4. $I_{SD} \leq 8A$, di/dt $\leq 200A/\mu s$, $V_{DD} \leq BV_{DSS}$, Starting $T_J=25^{\circ}C$

THERMAL DATA

PARAMETER		SYMBOL	RATING	UNIT
Junction to Ambient		θ _{JA}	62.5	°C/W
lupation to Case	TO-220	0	0.85	°C/W
Junction to Case	TO-220F/TO-220F1	θις	2.6	°C/W

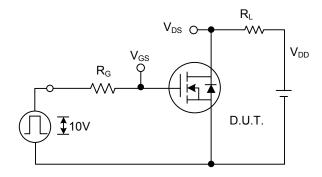
■ ELECTRICAL CHARACTERISTICS (T_c =25°C, unless otherwise specified)


PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS							
Drain-Source Breakdown Voltage		BV _{DSS}	V _{GS} = 0 V, I _D = 250 μA	650			V
Drain-Source Leakage Current		I _{DSS}	V _{DS} = 650 V, V _{GS} = 0 V			10	μA
Cata Source Lookage Current	Forward	- I _{GSS}	$V_{GS} = 30 V, V_{DS} = 0 V$			100	nA
Gate-Source Leakage Current	Reverse		$V_{GS} = -30 V, V_{DS} = 0 V$			-100	nA
Breakdown Voltage Temperature	Coefficient	$\triangle BV_{DSS} / \triangle T_J$	I _D =250µA,Referenced to 25°C		0.7		V/°C
ON CHARACTERISTICS							
Gate Threshold Voltage		V _{GS(TH)}	$V_{DS} = V_{GS}, I_{D} = 250 \ \mu A$	2.0		4.0	V
Static Drain-Source On-State Resi	istance	R _{DS(ON)}	V _{GS} = 10 V, I _D = 4A			1.4	Ω
DYNAMIC CHARACTERISTICS							
Input Capacitance		CISS			331		рF
Output Capacitance		C _{OSS}	V _{DS} = 25 V, V _{GS} = 0V, f = 1MHz		90		рF
Reverse Transfer Capacitance		C _{RSS}	רוויוו – וך∠		8		рF
SWITCHING CHARACTERISTICS	S						
Total Gate Charge		Q_{G}	V _{DS} = 50V, V _{GS} =10V, I _D =1.3A I _G =100µA (Note 1, 2)		23		nC
Gate-Source Charge		Q_{GS}			7.5		nC
Gate-Drain Charge		Q _{GD}	$I_G = 100 \mu A$ (Note 1, 2)		4		nC
Turn-On Delay Time		t _{D(ON)}			63		ns
Turn-On Rise Time		t _R	V _{DD} =30V, V _{GS} =10V, I _D =0.5A,		31		ns
Turn-Off Delay Time		t _{D(OFF)}	R _G =25Ω (Note 1, 2)		155		ns
Turn-Off Fall Time		t _F			36		ns
DRAIN-SOURCE DIODE CHARA	CTERISTIC	S AND MAXI	MUM RATINGS				
Maximum Continuous Drain-Sourc	e Diode					8	А
Forward Current		ls				0	A
Maximum Pulsed Drain-Source Diode		I _{SM}				32	А
Forward Current						52	~
Drain-Source Diode Forward Voltage		V _{SD}	V _{GS} = 0 V, I _S =8A			1.4	V
Reverse Recovery Time		trr	V _{GS} = 0 V, I _S = 8A,		356		ns
Reverse Recovery Charge		Q _{RR}	dI _F /dt = 100 A/µs		3.9		μC
Notos: 1 Pulso Tost: Pulso width	< 000 D	1					

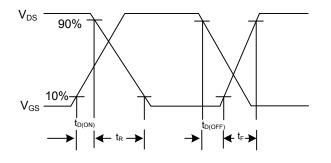

Notes: 1. Pulse Test: Pulse width \leq 300µs, Duty cycle \leq 2%

2. Essentially independent of operating temperature

TEST CIRCUITS AND WAVEFORMS

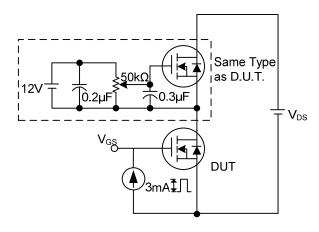


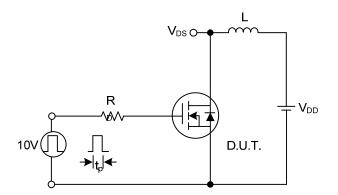
 V_{GS}


10V

Q_{GS}

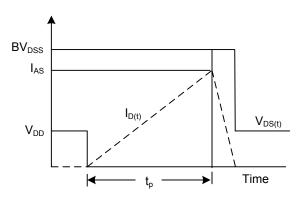
■ TEST CIRCUITS AND WAVEFORMS (Cont.)

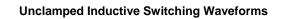




 Q_{G}

 Q_{GD}


Gate Charge Test Circuit



Unclamped Inductive Switching Test Circuit

Gate Charge Waveform

Charge

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

