

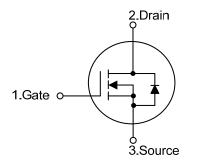
UNISONIC TECHNOLOGIES CO., LTD

UNA06R180M

Advance

35A, 60V N-CHANNEL ENHANCEMENT MODE TRENCH POWER MOSFET

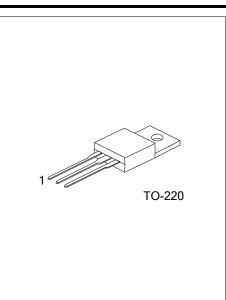
DESCRIPTION


The UTC **UNA06R180M** is an N-channel Power MOSFET, it uses UTC's advanced technology to provide the customers with high switching speed and low on-state resistance, etc.

The UTC **UNA06R180M** is suitable for boost converters and synchronous rectifiers for consumer, telecom, industrial power supplies and LED, etc.

FEATURES

- * R_{DS(ON)} < 18mΩ @ V_{GS}=10V, I_D=30A
- * High power and current handling capability
- * High speed switching
- * Low gate charge


SYMBOL


ORDERING INFORMATION

Ordering Number		Dookogo	Pin Assignment			Decking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
UNA06R180ML-TA3-T UNA06R180MG-TA3-T		TO-220	G	D	S	Tube	
Note: Pin Assignment: G: Gate D: Drain S: Source							

NOLE.	Fill Assignment. G. Gale	D. Dialit S. Source	5
	UNA06R180ML- <u>TA3-R</u>	(1)Packing Type	(1) R: Tape Reel
		(2)Package Type	(2) TA3: TO-220
		(3)Green Package	(3) L: Lead Free, G: Halogen Free and Lead Free

MARKING

■ **ABSOLUTE MAXIMUM RATING** (T_A =25°C, unless otherwise specified)

PARAMETER			SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V _{DSS}	60	V	
Gate-Source Voltage		V _{GSS}	±20	V	
Drain Current		T _C =25°C		35	А
	Continuous	T _C =100°C		27	А
	(Note 2)	T _A =25°C	I _D	7	А
		T _A =70°C		6	А
	Pulsed(Note	Pulsed(Note 3)		120	А
Avalanche Current			I _{AS}	26	А
Avalanche Energy (Note4)		E _{AS}	101	mJ	
Power Dissipation $T_{C}=25^{\circ}C$ $T_{C}=100^{\circ}C$ $T_{A}=25^{\circ}C$ $T_{A}=70^{\circ}C$			100	W	
			50	W	
		T _A =25°C	P _D	2.1	W
		T _A =70°C		1.3	W
Junction Temperature		TJ	150	°C	
Storage Temperature Range		T _{STG}	-55~+150	°C	

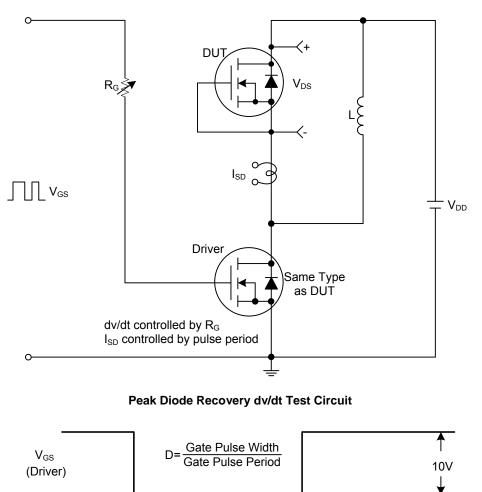
Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

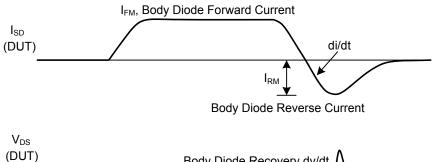
- 2. Current limited by bond wire.
- 3. Repetitive rating: Pulse width limited by maximum junction temperature.
- 4. L=0.3mH, I_{AS} =26A, V_{DD} =50V, R_G =25 Ω , Starting T_J = 25°C
- 5. $I_{SD} \le 26A$, di/dt $\le 200A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting T_J = 175°C

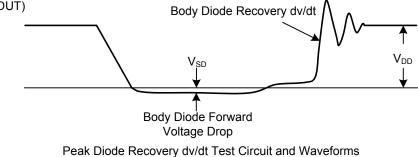
THERMAL RESISTANCES CHARACTERISTICS

PARAMETER		SYMBOL	RATINGS	UNIT	
Junction to ambient	steady state	θ_{JA}	60	°C/W	
Junction to Case	steady state	θις	1.5	°C/W	

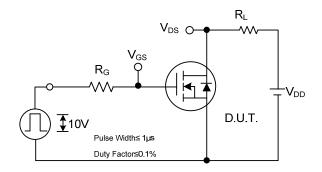
■ ELECTRICAL CHARACTERISTICS (T_A =25°C, unless otherwise specified)

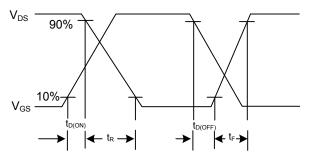

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS	STRIBUL		101114			
Drain-Source Breakdown Voltage	BV _{DSS}	I _D =250μA, V _{GS} =0V 60				V
		V_{DS} =60V, V_{GS} =0V			1	μA
Drain-Source Leakage Current	I _{DSS}	V _{DS} =60V, T _J =55°C			5	μA
Forward	- I _{GSS}	V _{GS} =+20V, V _{DS} =0V			+100	nA
Gate-Source Leakage Current Reverse		V _{GS} =-20V, V _{DS} =0V			-100	nA
ON CHARACTERISTICS						
Gate Threshold Voltage	V _{GS(TH)}	V _{DS} =V _{GS} , I _D =250µA	1.0		3.0	V
Static Drain-Source On-State Resistance	R _{DS(ON)}			15	18	mΩ
(Note 1)				50		0
Forward Transconductance(Note 1)	g fs	V _{DD} =5V, I _D =30A		50		S
			1	1840	1	pF
Input Capacitance	C _{ISS}	-1				E E
Output Capacitance	Coss	V _{GS} =0V, V _{DS} =30V, f=1.0MHz		185		pF
Reverse Transfer Capacitance			80	-	pF	
	Rg	V_{GS} =0V, V_{DS} =0V, f=1MHz		3	5	Ω
		1	1	07.5	i	
Total Gate Charge	Q _G	V _{DS} =50V, V _{GS} =10V, I _D =1.3A		27.5		nC
Gate to Source Charge	Q _{GS}	(Note 1, 2)		10		nC
Gate to Drain Charge				6.5		nC
Turn-on Delay Time	t _{D(ON)}			12		ns
Rise Time	t _R	V_{DD} = 30V, I_D = 0.5A, R_G = 25 Ω		5.2		ns
Turn-off Delay Time	t _{D(OFF)}	(Note 1, 2)		38		ns
Fall-Time	t _F			27		ns
SOURCE- DRAIN DIODE RATINGS AND C	İ	ISTICS	1	i	i .	i
Maximum Body-Diode Continuous Current	Is	Integral p-n diode in MOSFET			35	A
Maximum Body-Diode Pulsed Current	I _{SM}				140	Α
Drain-Source Diode Forward Voltage	V _{SD}	I _S =1A, V _{GS} =0V		0.75	1.0	V
Body Diode Reverse Recovery Time	t _{RR}	ls=30A, dls/dt=100A/µs		35		ns
Body Diode Reverse Recovery Charge	Q _{RR}			47		nC


Notes: 1. Pulse test: pulse width \leq 300us, duty cycle \leq 2%.

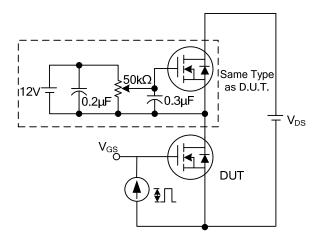

2. Essentially independent of operating temperature.

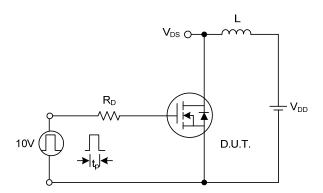
TEST CIRCUITS AND WAVEFORMS



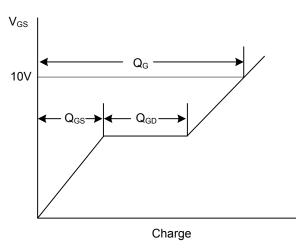

Peak Diode Recovery dv/dt Waveforms

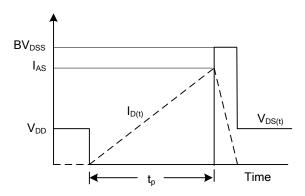
Advance


TEST CIRCUITS AND WAVEFORMS



Switching Test Circuit




Gate Charge Test Circuit

Unclamped Inductive Switching Test Circuit

Unclamped Inductive Switching Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

