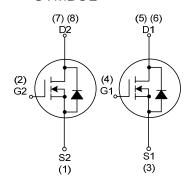


UNISONIC TECHNOLOGIES CO., LTD

UD4840-H Power MOSFET

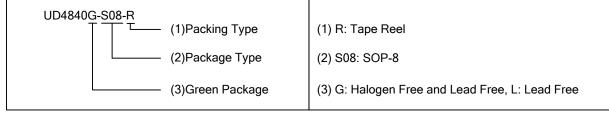
6A, 40V DUAL N-CHANNEL ENHANCEMENT MODE FIELD EFFECT TRANSISTOR

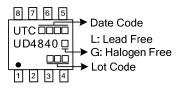
■ DESCRIPTION


The UTC **UD4840-H** is a dual N-Channel enhancement mode field effect transistor, it uses UTC's advanced technology to provide customers with a minimum on-state resistance and low gate charge, etc.

The UTC **UD4840-H** is suitable for use as a load switch or in PWM applications.

- * $R_{DS(ON)}$ < 32 m Ω @ V_{GS} =10V, I_D =6A $R_{DS(ON)}$ < 42 m Ω @ V_{GS} =4.5V, I_D =5A
- * Low gate charge


■ SYMBOL


ORDERING INFORMATION

Ordering Number		Dookogo	Pin Assignment							Dooking	
Lead Free	Halogen Free	Package	1	2	3	4	5	6	7	8	Packing
UD4840L-S08-R	UD4840G-S08-R	SOP-8	S2	G2	S1	G1	D1	D1	D2	D2	Tape Reel

Note: Pin Assignment: G: Gate D: Drain S: Source

MARKING

SOP-8

<u>www.unisonic.com.tw</u> 1 of 4

■ ABSOLUTE MAXIMUM RATINGS (T_A=25°C, unless otherwise noted)

PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V_{DSS}	40	V
Gate-Source Voltage		V_{GSS}	±20	V
Continuous Drain Current	T _A =25°C	_	6	Α
(Note 1)	T _A =70°C	I_D	5	Α
Pulsed Drain Current (Note 2)		I_{DM}	20	Α
Single Pulsed Avalanche Energy	Single Pulsed (Note 3)	E _{AS}	5	mJ
Davis Diagination	T _A =25°C	Ъ	2	W
Power Dissipation	T _A =70°C	P_D	1.28	W
Junction Temperature		T_J	-55 ~ +150	°C
Storage Temperature Range		T _{STG}	-55 ~ +150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 3. L = 0.1mH, I_{AS} = 10A, V_{DD} = 20V, R_{G} = 25 Ω , Starting T_{J} = 25 $^{\circ}$ C.

■ THERMAL CHARACTERISTICS

PARAMETER		SYMBOL	MIN	TYP	MAX	UNIT	
hometica to Amelicant (Note 4)	t≤10s	0		48	62.5	°C/W	
Junction to Ambient (Note 1)	Steady-State	θ_{JA}		74	110	°C/W	
Junction to Lead (Note 3)	Steady-State	θ.ιс		35	50	°C/W	

Notes: 1. The value of θ_{JA} is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any given application depends on the user's specific board design. The current rating is based on the t≤10s thermal resistance rating.

- 2. Repetitive rating, pulse width limited by junction temperature.
- 3. The θ_{JA} is the sum of the thermal impedence from junction to lead θ_{JL} and lead to ambient.

UD4840-H

■ ELECTRICAL CHARACTERISTICS (T_J=25°C, unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT			
OFF CHARACTERISTICS									
Drain-Source Breakdown Voltage	BV _{DSS}	I _D =10mA, V _{GS} =0V	40			V			
Zana Oata Valtana Dania Oumant	I _{DSS}	V _{DS} =32V, V _{GS} =0V			1	μA			
Zero Gate Voltage Drain Current		V _{DS} =32V, V _{GS} =0V, T _J =55°C			5	μA			
Cata Source Leakage Current Forward	- I _{GSS}	V _{GS} =+20V, V _{DS} =0V			+100	nA			
Gate-Source Leakage Current Reverse		V _{GS} =-20V, V _{DS} =0V			-100	nA			
ON CHARACTERISTICS									
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1.5	2.3	3	V			
On State Drain Current	$I_{D(ON)}$	V_{DS} =5V, V_{GS} =10V	20			Α			
		V_{GS} =10V, I_D =6A			32	mΩ			
Static Drain-Source On-State Resistance	$R_{DS(ON)}$	V _{GS} =10V, I _D =6A, T _J =125°C			48	mΩ			
		V_{GS} =4.5 V , I_D =5 A			42	mΩ			
Forward Transconductance	g fs	V_{DS} =5V, I_{D} =6A		22		S			
DYNAMIC PARAMETERS									
Input Capacitance	C _{ISS}			400		pF			
Output Capacitance	Coss	V_{GS} =0V, V_{DS} =25V, f=1MHz		50		pF			
Reverse Transfer Capacitance	C_{RSS}			25		pF			
Gate Resistance	R_G	V _{GS} =0V, V _{DS} =0V, f=1MHz		2.7		Ω			
SWITCHING PARAMETERS			_						
Total Gate Charge	Q_{G}	V_{GS} =4.5V, V_{DS} =32V, I_{D} =6.0A I_{G} =1mA		7.2		nC			
		V -40V V -20V I -4 0A		30		nC			
Gate to Source Charge	Q_GS	-V _{GS} =10V, V _{DS} =20V, I _D =1.0A -I _G =100µA		1.0		nC			
Gate to Drain Charge	Q_GD	-1 _G -100μΑ		2.0		nC			
Turn-ON Delay Time	t _{D(ON)}			115		ns			
Rise Time	t _R	V_{GS} =10V, V_{DS} =30V, , I_{D} =0.5A		190		ns			
Turn-OFF Delay Time	t _{D(OFF)}	$R_G=25\Omega$		5		ns			
Fall-Time	t _F			19		ns			
SOURCE- DRAIN DIODE RATINGS AND	CHARACTER	RISTICS							
Maximum Body-Diode Continuous Current	Is				3	Α			
Diode Forward Voltage	V _{SD}	I _S =1A, V _{GS} =0V		0.77	1	V			
Body Diode Reverse Recovery Time	t _{rr}			20.5		ns			
Body Diode Reverse Recovery Charge	Qrr	I _F =6A, dl/dt=100A/μs		14.5		nC			

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.