

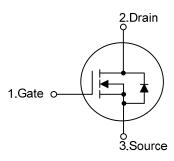
# UNISONIC TECHNOLOGIES CO., LTD

UTT3N10-H

**Preliminary** 

**Power MOSFET** 

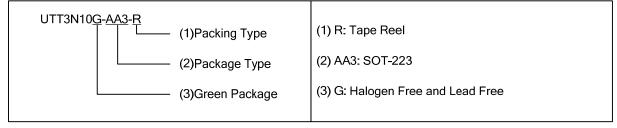
# 2.5A, 100V N-CHANNEL LOGIC LEVEL ENHANCEMENT MODE FIELD EFFECT TRANSISTOR


# ■ DESCRIPTION

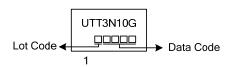
The UTC **UTT3N10-H** is an N-channel logic level enhancement mode field effect transistor, it uses UTC's advanced technology to provide the customers with high switching speed and low gate charge.

#### **■ FEATURES**

- \*  $R_{DS(on)}$  < 225m $\Omega$  @  $V_{GS}$  = 10V,  $I_D$  = 1.25A  $R_{DS(on)}$  < 360m $\Omega$  @  $V_{GS}$  = 4.5V,  $I_D$  = 125A
- \* High switching speed


## ■ SYMBOL




### ORDERING INFORMATION

| Order Number   | Package | Pin Assignment |   |   | Dooking   |  |
|----------------|---------|----------------|---|---|-----------|--|
|                |         | 1              | 2 | 3 | Packing   |  |
| UTT3N10G-AA3-R | SOT-223 | G              | D | S | Tape Reel |  |

Note: Pin Assignment: G: Gate D: Drain S: Source



#### ■ MARKING



1 SOT-223

<u>www.unisonic.com.tw</u> 1 of 4

<sup>\*</sup> Low grage

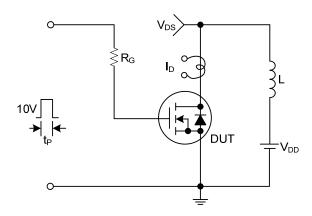
## ■ ABSOLUTE MAXIMUM RATINGS (T<sub>A</sub>=25°C, unless otherwise noted)

| PARAMETER                              |                                 | SYMBOL             | RATINGS  | UNIT |
|----------------------------------------|---------------------------------|--------------------|----------|------|
| Drain-Source Voltage                   |                                 | $V_{\mathrm{DSS}}$ | +100     | V    |
| Gate-Source Voltage                    |                                 | $V_{GSS}$          | ±20      | V    |
| Drain Current                          | Continuous T <sub>A</sub> =25°C |                    | 2.5      | Α    |
|                                        | (Note 1) T <sub>A</sub> =70°C   |                    | 2.0      | Α    |
|                                        | Pulsed (Note 2)                 | I <sub>DM</sub>    | 10       | Α    |
| Single Pulsed Avalanche Energy         |                                 | E <sub>AS</sub>    | 12       | mJ   |
| Power Dissipation T <sub>A</sub> =25°C |                                 | D                  | 3        | W    |
| (Note 1) T <sub>A</sub> =70°C          |                                 | P <sub>D</sub>     | 1.9      |      |
| Junction Temperature                   |                                 | TJ                 | -55~+150 | °C   |
| Storage Temperature Range              |                                 | T <sub>STG</sub>   | -55~+150 | °C   |

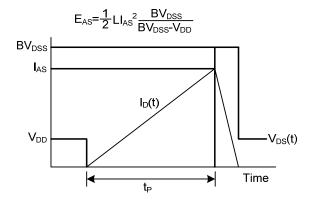
Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

### **■ THERMAL CHARACTERISTICS**

| PARAMETER                    | SYMBOL        | RATINGS | UNIT |
|------------------------------|---------------|---------|------|
| Junction to Case (Note 1)    | $\theta_{JC}$ | 12      | °C/W |
| Junction to Ambient (Note 1) | $\theta_{JA}$ | 42      | °C/W |


#### ■ **ELECTRICAL CHARACTERISTICS** (T<sub>A</sub>=25°C, unless otherwise noted)

| PARAMETER                                       |                    | SYMBOL              | TEST CONDITIONS MI                                                                         |     | TYP | MAX  | UNIT |
|-------------------------------------------------|--------------------|---------------------|--------------------------------------------------------------------------------------------|-----|-----|------|------|
| OFF CHARACTERISTICS                             |                    |                     |                                                                                            |     |     |      |      |
| Drain-Source Breakdown Voltage                  |                    | $BV_{DSS}$          | I <sub>D</sub> =250μA, V <sub>GS</sub> =0V                                                 | 100 |     |      | V    |
| Drain-Source Leakage Current                    |                    | $I_{DSS}$           | V <sub>DS</sub> =80V, V <sub>GS</sub> =0V                                                  |     |     | 1    | μΑ   |
| Gate-Source Leakage Current                     | Forward            | I <sub>GSS</sub>    | $V_{GS}$ =+20V, $V_{DS}$ =0V                                                               |     |     | +100 | nA   |
|                                                 | Reverse            |                     | V <sub>GS</sub> =-20V, V <sub>DS</sub> =0V                                                 |     |     | -100 | nA   |
| ON CHARACTERISTICS                              | ON CHARACTERISTICS |                     |                                                                                            |     |     |      |      |
| Gate Threshold Voltage                          |                    | $V_{GS(TH)}$        | $V_{DS}=V_{GS}$ , $I_D=250\mu A$                                                           |     | 1.6 | 2.5  | V    |
| Static Drain-Source On-State Resistance         |                    | R <sub>DS(ON)</sub> | $V_{GS}$ =10V, $I_{D}$ =1.25A                                                              |     | 180 | 225  | mΩ   |
|                                                 |                    |                     | V <sub>GS</sub> =4.5V, I <sub>D</sub> =1A                                                  |     | 265 | 360  | mΩ   |
| Forward Transconductance                        |                    | <b>g</b> fs         | V <sub>DS</sub> =20V, I <sub>D</sub> =1.25A                                                |     | 2.3 |      | S    |
| <b>DYNAMIC PARAMETERS</b> (Note                 | e 3)               |                     |                                                                                            |     |     |      |      |
| Input Capacitance                               |                    | $C_{ISS}$           |                                                                                            |     | 550 |      | pF   |
| Output Capacitance                              |                    | Coss                | $V_{GS}$ =0V, $V_{DS}$ =25V, f=1.0MHz                                                      |     | 30  |      | pF   |
| Reverse Transfer Capacitance                    |                    | $C_{RSS}$           |                                                                                            |     | 19  |      | pF   |
| <b>SWITCHING PARAMETERS</b> (N                  | ote 3)             |                     |                                                                                            |     |     |      |      |
| Total Gate Charge                               |                    | $Q_G$               | \/ -10\/ \/ -50\/   -1.3A                                                                  |     | 65  |      | nC   |
| Gate to Source Charge                           |                    | $Q_GS$              | V <sub>GS</sub> =10V, V <sub>DS</sub> =50V, I <sub>D</sub> =1.3A<br>-I <sub>G</sub> =100μA |     | 2.5 |      | nC   |
| Sate to Drain Charge                            |                    | $Q_GD$              | IG-100μΑ                                                                                   |     | 2.2 |      | nC   |
| Turn-ON Delay Time                              |                    | t <sub>D(ON)</sub>  |                                                                                            |     | 25  |      | ns   |
| Rise Time                                       |                    | $t_R$               | $V_{DD}$ =30V, $I_{D}$ =0.5A, $R_{G}$ =25 $\Omega$ ,                                       |     | 12  |      | ns   |
| Turn-OFF Delay Time                             |                    | t <sub>D(OFF)</sub> | V <sub>GS</sub> =10V                                                                       |     | 150 |      | ns   |
| Fall-Time                                       |                    | $t_{F}$             |                                                                                            |     | 55  |      | ns   |
| SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS |                    |                     |                                                                                            |     |     |      |      |
| Drain-Source Diode Forward Voltage              |                    | $V_{SD}$            | I <sub>S</sub> =1A, V <sub>GS</sub> =0V                                                    |     | 0.8 | 1.2  | V    |


- Note: 1. Surface Mounted on FR4 Board, t ≤10sec.
  - 2. Pulse Test: Pulse Width ≤ 300us, Duty Cycle ≤ 2%
  - 3. Guaranteed by design, not subject to production testing
  - 4. Starting  $T_J$ =25°C, L=0.5mH,  $V_{DD}$ =50V



# **■ TEST CIRCUITS AND WAVEFORMS**



Unclamped Inductive Switching Test Circuit



Unclamped Inductive Switching Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.