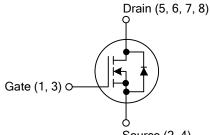
UTC UNISONIC TECHNOLOGIES CO., LTD

UTD02R075

Preliminary

15A, 20V N-CHANNEL POWER MOSFET

DESCRIPTION

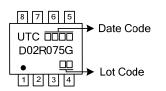

The UTC **UTD02R075** is an N-channel MOSFET, it uses UTC's advanced technology to provide the customers with high switching speed, a minimum on-state resistance and low gate charge, etc.

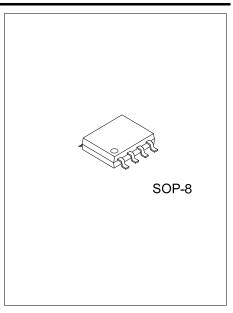
The UTC **UTD02R075** is suitable for DC-DC converters, load switch and battery protection.

FEATURES

- * $R_{DS(on)}$ < 7.5 m Ω @ V_{GS} =4.5V, I_D =15A
- $R_{DS(on)}$ < 10 m Ω @ V_{GS}=2.5 V, I_D=12A
- * High switching speed
- * Low gate charge

SYMBOL




Source (2, 4)

ORDERING INFORMATION

Ordering Number			Dookogo		Pin Assignment								Decking	
Ordering Number			Package		1	2	3	4	5	6	7	8	Packing	
UTD02R075G-S08-R			SO	P-8	S	S	S	G	D	D	D	D	Tape Reel	
Note: Pin Assignment: G: Gate D: Drain S: Source														
UTD02R075G-S08-R (1)Packing Typ (2)Package Typ (3)Green Package				(1) R: (2) S0 (3) G:	8: S	OP-8	3	e and	l Lea	nd Fr	ee			

MARKING

■ **ABSOLUTE MAXIMUM RATINGS** (T_A=25°C, unless otherwise noted)

PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V _{DSS}	20	V
Gate-Source Voltage		V _{GSS}	±8	V
Droin Current	Continuous (Note a)	I _D	15	А
Drain Current	Pulsed	I _{DM}	50	А
Power Dissipation (Note a)		PD	2.5	W
Junction Temperature		TJ	-55~+150	°C
Storage Temperature Range		T _{STG}	-55~+150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

THERMAL CHARACTERISTICS

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient (Note a)	θ _{JA}	50	°C/W
Junction to Case (Note)	θ _{JC}	25	°C/W

Note: θ_{JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. θ_{JC} is guaranteed by design while θ_{JA} is determined by the user's board design.

a) 50°C/W when mounted on a 0.5 in² pad of 2 oz copper.

ELECTRICAL CHARACTERISTICS (T_A=25°C, unless otherwise noted)

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS							
Drain-Source Breakdown Voltage		BV _{DSS}	I _D =250μΑ, V _{GS} =0V	20			V
Breakdown Voltage Temperature		$\triangle BV_{DSS} / \triangle T_J$	Reference to 25°C,		29		mV/°C
Coefficient			I _D =250μA				
Drain-Source Leakage Current		I _{DSS}	V _{DS} =16V, V _{GS} =0V			1	μA
Cata Source Leakage Current	Forward		V _{GS} =8V, V _{DS} =0V			+100	nA
Gate-Source Leakage Current	Reverse	I _{GSS}	V _{GS} =-8V, V _{DS} =0V			-100	nA
ON CHARACTERISTICS (Note)				-			
Gate Threshold Voltage		V _{GS(TH)}	V _{DS} =V _{GS} , I _D =250µA	0.4	0.9	1.5	V
Gate Threshold Voltage Temperature			$I_D = 250 \ \mu A$, Referenced to		-4		mV/℃
Coefficient		$\Delta V_{GS(TH)}/\Delta T_J$	25°C		-4		III V/ C
Static Drain-Source On-State Resistance			V _{GS} =4.5V, I _D =15A		6	7.5	mΩ
		Proven	V _{GS} =4.5V, I _D =15A,		9	13	mΩ
		R _{DS(ON)}	T _J =125°C		3	10	11152
			V _{GS} =2.5V, I _D =12A		8	10	mΩ
On State Drain Current		I _{D(ON)}	V _{GS} =4.5V, V _{DS} =-5V	25			Α
DYNAMIC PARAMETERS		ſ		1	1		
Input Capacitance		CISS	V _{GS} =0V, V _{DS} =10V,		4700		pF
Output Capacitance		Coss	f=1.0MHz		850		pF
Reverse Transfer Capacitance		C _{RSS}	1-1.00012		310		pF
SWITCHING PARAMETERS (No	ote)	1					
Total Gate Charge		Q _G	_		47	66	nC
Gate to Source Charge		Q _{GS}	V_{GS} =5V, V_{DS} =10V, I_{D} =15A		7		nC
Gate to Drain Charge		Q _{GD}			10.5		nC
Turn-ON Delay Time		t _{D(ON)}			20	32	ns
Rise Time		t _R	V_{DD} =10V, I_D =1A, R_{GEN} =6 Ω ,		27	44	ns
Turn-OFF Delay Time		t _{D(OFF)}	V _{GS} =4.5V		95	133	ns
Fall-Time		t _F			35	56	ns
SOURCE- DRAIN DIODE RATIN		CHARACTERI	STICS				_
Maximum Body-Diode Continuou	us Current	Is				2.1	А
Drain-Source Diode Forward Vol	tage	V_{SD}	I _S =2.1A, V _{GS} =0V (Note)		0.65	1.2	V

UTD02R075

Preliminary

Note: Pulse Test: Pulse Width≤300us, Duty Cycle ≤ 2.0%

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.