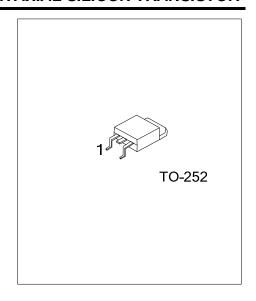
2SB936/A

**Preliminary** 


PNP EPITAXIAL SILICON TRANSISTOR

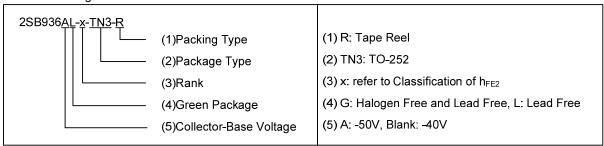
# SILICON PNP EPITAXIAL PLANAR TYPE

#### DESCRIPTION

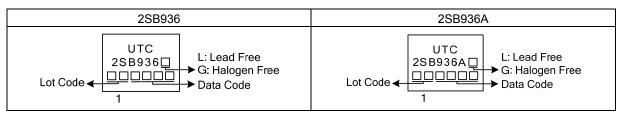
The UTC **2SB936/A** is a silicon PNP epitaxial planar type, it uses UTC's advanced technology to provide the customers with high DC current gain, low collector to emitter saturation voltage and high switch speed, etc.

The UTC **2SB936/A** is suitable for small electronic equipment and printed circuit board, etc.




#### **■ FEATURES**

- \* High DC current gain
- \* Low collector to emitter saturation voltage
- \* High switch speed


#### **■ ORDERING INFORMATION**

| Ordering Number |                | Dookogo | Pin Assignment |   |   | Dooking   |
|-----------------|----------------|---------|----------------|---|---|-----------|
| Lead Free       | Halogen Free   | Package | 1              | 2 | 3 | Packing   |
| 2SB936L-TN3-R   | 2SB936G-TN3-R  | TO-252  | В              | С | E | Tape Reel |
| 2SB936AL-TN3-R  | 2SB936AG-TN3-R | TO-252  | В              | С | Е | Tape Reel |

Note: Pin Assignment: B: Base C: Collector E: Emitter



## **■** MARKING



www.unisonic.com.tw 1 of 3

#### ■ ABSOLUTE MAXIMUM RATINGS (T<sub>C</sub>=25°C)

| PARAMETER                   |                      | SYMBOL                                | RATINGS   | UNIT |
|-----------------------------|----------------------|---------------------------------------|-----------|------|
| Collector Dage Voltage      | 2SB936               | \/                                    | -40       | V    |
| ollector-Base Voltage       | 2SB936A              | $V_{CBO}$                             | -50       | V    |
| Collector Emitter Voltage   | 2SB936               | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | -20       | V    |
| llector-Emitter Voltage     | 2SB936A              | $V_{CEO}$                             | -40       | V    |
| Emitter-Base Voltage        |                      | $V_{EBO}$                             | -5        | V    |
| Collector Current           |                      | Ic                                    | -10       | Α    |
| Peak Collector Current      |                      | I <sub>CP</sub>                       | -20       | Α    |
| Collector Dower Dissinction | T <sub>C</sub> =25°C | D                                     | 40        | W    |
| llector Power Dissipation   | T <sub>A</sub> =25°C | Pc                                    | 1.3       | W    |
| Junction Temperature        |                      | TJ                                    | 150       | °C   |
| Storage Temperature         |                      | T <sub>STG</sub>                      | -55 ~+150 | °C   |

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

## **■ ELECTRICAL CHARACTERISTICS** (T<sub>C</sub>=25°C)

| PARAMETER                                          |         | SYMBOL            | TEST CONDITIONS                                                    | MIN | TYP | MAX  | UNIT |
|----------------------------------------------------|---------|-------------------|--------------------------------------------------------------------|-----|-----|------|------|
| Collector-Base Breakdown 2SB936<br>Voltage 2SB936A |         | D\/ana            | = 10mA   =0                                                        | -40 |     |      | V    |
|                                                    |         | BV <sub>CBO</sub> | I <sub>C</sub> =-10mA, I <sub>E</sub> =0                           | -50 |     |      | V    |
| Collector Emitter Voltage                          | 2SB936  | BV <sub>CEO</sub> | <br> Ic=-10mA, I <sub>B</sub> =0                                   | -20 |     |      | V    |
| Collector-Emitter Voltage                          | 2SB936A |                   | ICTOTTA, IB-0                                                      | -40 |     |      | V    |
| Emitter-Base Breakdown Voltage                     |         | $BV_{EBO}$        | I <sub>C</sub> =-10mA, I <sub>C</sub> =0                           | -5  |     |      | V    |
| Collector Cut-Off Current                          | 2SB936  |                   | V <sub>CB</sub> =-40V, I <sub>E</sub> =0                           |     |     | -50  | μΑ   |
| Collector Cut-On Current                           | 2SB936A | I <sub>CBO</sub>  | V <sub>CB</sub> =-50V, I <sub>E</sub> =0                           |     |     | -50  | μΑ   |
| Emitter Cut-Off Current                            |         | I <sub>EBO</sub>  | V <sub>EB</sub> =-5V, I <sub>C</sub> =0                            |     |     | -50  | μΑ   |
| DC Current Gain                                    |         | h <sub>FE1</sub>  | V <sub>CE</sub> =-2V, I <sub>C</sub> =-0.1A                        | 45  |     |      |      |
| DC Current Gain                                    |         | h <sub>FE2</sub>  | $V_{CE}$ =-2V, $I_{C}$ =-3 A                                       | 90  |     | 260  |      |
| Collector-Emitter Saturation Vo                    | ltage   | $V_{CE(sat)}$     | I <sub>C</sub> =-10A, I <sub>B</sub> =-0.33A                       |     |     | -0.6 | V    |
| Base-Emitter Saturation Voltag                     | е       | $V_{BE(sat)}$     | I <sub>C</sub> =-10A, I <sub>B</sub> =-0.33A                       |     |     | -1.5 | V    |
| Transition Frequency                               |         | $f_T$             | V <sub>CE</sub> =-10V, f=10MHz, I <sub>C</sub> =-0.5A              |     | 100 |      | MHz  |
| Output Capacitance                                 |         | $C_ob$            | V <sub>CB</sub> =-10V, f=1MHz, I <sub>E</sub> =0                   |     | 400 |      | pF   |
| Turn-On Time                                       |         | t <sub>on</sub>   |                                                                    |     | 0.1 |      | μs   |
| Storage Time                                       |         | ts                | I <sub>C</sub> =-3A, I <sub>B1</sub> =-0.1A, I <sub>B2</sub> =0.1A |     | 0.5 |      | μs   |
| Fall Time                                          |         | t <sub>r</sub>    |                                                                    |     | 0.1 |      | μs   |

## ■ CLASSIFICATION OF h<sub>FE2</sub>

| RANK             | Q        | Р         |
|------------------|----------|-----------|
| h <sub>FE2</sub> | 90 ~ 180 | 130 ~ 260 |

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

