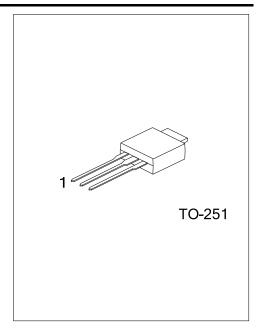


UNISONIC TECHNOLOGIES CO., LTD

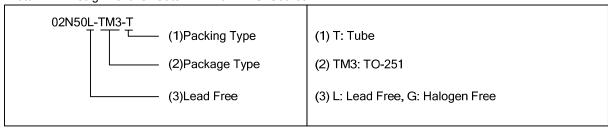
02N50 Preliminary Power MOSFET


0.2A, 500V N-CHANNEL POWER MOSFET

DESCRIPTION

The UTC **02N50** is an N-channel MOSFET, it uses UTC's advanced technology to provide the customers with high breakdown voltage

■ FEATURES


- * $R_{DS(on)}$ =75 Ω @ V_{GS} =10V, I_{D} =0.15A
- * High breakdown voltage

■ ORDERING INFORMATION

Ordering	Daalaaa	Pin Assignment			Dankina		
Lead Free	Halogen Free	Package	1	2	3	Packing	
02N50L-TM3-T	02N50G-TM3-T	TO-251	G	D	S	Tube	

Note: Pin Assignment: G: Gate D: Drain S: Source

<u>www.unisonic.com.tw</u> 1 of 3

ABSOLUTE MAXIMUM RATINGS

PARAMETER	{	SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V_{DSS}	500	V
Gate-Source Voltage		V_{GSS}	±30	V
Dunin Cumunt	Continuous	I _D	0.2	Α
Drain Current	Pulsed	I _{DM}	1	Α
Avalanche Current (Note 1)		I _{AR}	0.2	Α
Power Dissipation		P_{D}	40	W
Junction Temperature		T_J	150	°C
Storage Temperature Range		T _{STG}	-55 ~+150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ ELECTRICAL CHARACTERISTICS

PARAMETER		SYMBOL	TEST CONDITIONS		TYP	MAX	UNIT
OFF CHARACTERISTICS				_			
Drain-Source Breakdown Voltage	е	BV_{DSS}	$I_D=250\mu A, V_{GS}=0V$				٧
Drain-Source Leakage Current		I_{DSS}	V _{DS} =500V, V _{GS} =0V, T _A =25°C			10	μΑ
Cata Sauraa Laakaga Current	Forward		V_{GS} =+30V, V_{DS} =0V			+100	nA
Gate-Source Leakage Current	Reverse	I _{GSS}	V_{GS} =-30V, V_{DS} =0V			-100	nΑ
ON CHARACTERISTICS							
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{DS}=V_{GS}, I_{D}=250\mu A$ 2.8			4.5	V
Static Drain-Source On-State Re	sistance	R _{DS(ON)}	V _{GS} =10V, I _D =0.15A, T _A =25°C		62	75	Ω
DYNAMIC PARAMETERS							
Input Capacitance		C _{ISS}			200		pF
Output Capacitance		Coss	V _{GS} =0V, V _{DS} =25V, f=1.0MHz		20		pF
Reverse Transfer Capacitance		C_{RSS}			8		pF
SWITCHING PARAMETERS							
Total Gate Charge		Q_{G}			3.0	4.5	nC
Gate to Source Charge		Q_{GS}	V _{GS} =10V, I _D =0.2A, V _{PS} =400V		0.45	0.7	nC
Gate to Drain Charge		Q_{GD}			0.4	0.75	nC
Turn-ON Delay Time		$t_{D(ON)}$			9		ns
Rise Time		t _R	 Vpp=250V. lp=0.2A. Rg=25Ω		4		ns
Turn-OFF Delay Time		t _{D(OFF)}	VDD-250V, ID-0.2A, RG-2512		28		ns
Fall-Time		t_{F}			45		ns
SOURCE- DRAIN DIODE RATIF	NGS AND	CHARACTERI	STICS				
Maximum Body-Diode Continuou	us Current	Is				0.2	Α
Maximum Body-Diode Pulsed Cu	urrent	I _{SM}				1	Α
Drain-Source Diode Forward Vol	tage	V_{SD}	I _S =0.2A, V _{GS} =0V			1	V

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

