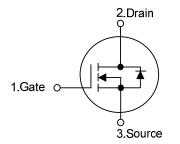


# UNISONIC TECHNOLOGIES CO., LTD

# F2N60

# 2.0A, 600V N-CHANNEL POWER MOSFET

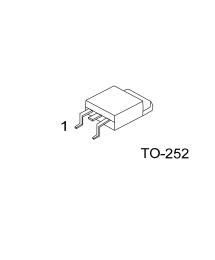

### DESCRIPTION

The UTC **F2N60** is a N-Channel enhancement mode silicon gate power MOSFET with Fast Body Diode, is designed high voltage, high speed power switching applications such, is designed to have better characteristics, such as fast switching time, low gate charge, low on-state resistance and have a high rugged avalanche characteristics. This power MOSFET is usually used at high speed switching applications in power supplies, PWM motor controls, high efficient AC to DC converters and bridge circuits.

## FEATURES

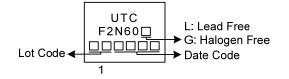
- \*  $R_{DS(ON)} \le 5.0 \ \Omega \ @ V_{GS} = 10V, I_D = 1.0A$
- \* Fast body diode MOSFET technology
- \* Ultra Low gate charge (typical 16nC)
- \* Fast switching capability
- \* Avalanche energy specified
- \* Improved dv/dt capability, high ruggedness

## SYMBOL




### ORDERING INFORMATION

| Ordering Number |              | Deekere | Pin Assignment |   |   | Deaking   |  |
|-----------------|--------------|---------|----------------|---|---|-----------|--|
| Lead Free       | Halogen Free | Package | 1              | 2 | 3 | Packing   |  |
| F2N60L-TN3-T    | F2N60G-TN3-T | TO-252  | G              | D | S | Tube      |  |
| F2N60L-TN3-R    | F2N60G-TN3-R | TO-252  | G              | D | S | Tape Reel |  |


| Note: Pin Assignment: G: Gate | D: Drain | S: Source |
|-------------------------------|----------|-----------|
|-------------------------------|----------|-----------|

| F2N60 <u>G-TN3-T</u> |                                                 |
|----------------------|-------------------------------------------------|
| (1)Packing Type      | (1) R: Tape Reel                                |
| (2)Package Type      | (2) TN3: TO-252                                 |
| (3)Green Package     | (3) G: Halogen Free and Lead Free, L: Lead Free |
|                      |                                                 |



# F2N60

# MARKING





| ABSOLUTE MAXIMUM RATINGS | $(T_c=25^{\circ}C, unless otherwise specified)$ |
|--------------------------|-------------------------------------------------|
|                          |                                                 |

| PARAMETER                                 |                        | SYMBOL           | RATINGS    | UNIT |  |
|-------------------------------------------|------------------------|------------------|------------|------|--|
| Drain-Source Voltage                      |                        | V <sub>DSS</sub> | 600        | V    |  |
| Gate-Source Voltage                       |                        | V <sub>GSS</sub> | ±30        | V    |  |
| Avalanche Current (Note 2)                |                        | I <sub>AR</sub>  | 2.0        | А    |  |
| Drain Current                             | Continuous             | I <sub>D</sub>   | 2.0        | А    |  |
|                                           | Pulsed (Note 2)        | I <sub>DM</sub>  | 8.0        | А    |  |
| Avalanche Energy                          | Single Pulsed (Note 3) | E <sub>AS</sub>  | 100        | mJ   |  |
|                                           | Repetitive (Note 2)    | E <sub>AR</sub>  | 4.5        | mJ   |  |
| Peak Diode Recovery dv/dt (Note 4)        |                        | dv/dt            | 4.5        | V/ns |  |
| Power Dissipation ( $T_c = 25^{\circ}C$ ) |                        | PD               | 44         | W    |  |
| Junction Temperature                      |                        | TJ               | +150       | °C   |  |
| Operating Temperature                     |                        | T <sub>OPR</sub> | -55 ~ +150 | °C   |  |
| Storage Temperature                       |                        | T <sub>STG</sub> | -55 ~ +150 | °C   |  |

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

2. Repetitive Rating : Pulse width limited by maximum junction temperature.

3. L=64mH, I<sub>AS</sub>=2.0A, V<sub>DD</sub>=50V, R<sub>G</sub>=25  $\Omega$ , Starting T<sub>J</sub> = 25°C

4.  $I_{SD} \leq 2.4A$ , di/dt $\leq 200A/\mu s$ ,  $V_{DD} \leq BV_{DSS}$ , Starting  $T_J = 25^{\circ}C$ 

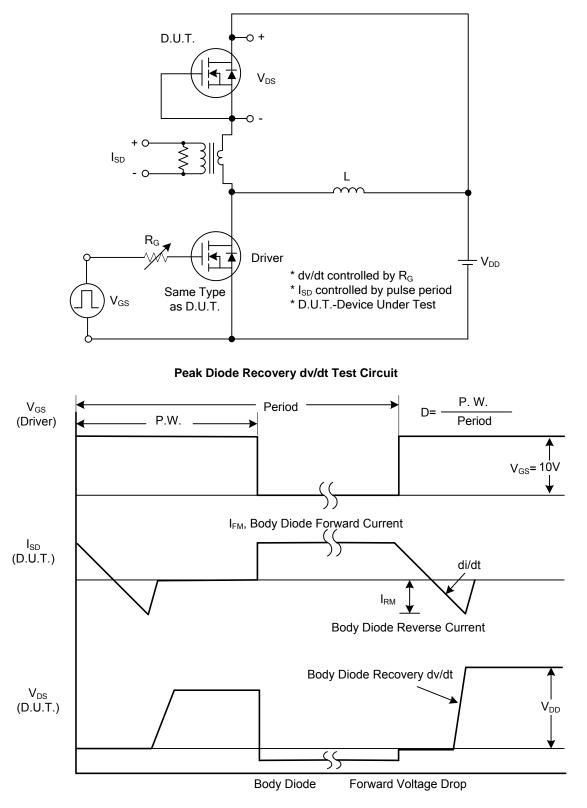
#### THERMAL DATA

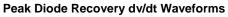
| PARAMETER           | SYMBOL          | RATINGS | UNIT |
|---------------------|-----------------|---------|------|
| Junction to Ambient | θ <sub>JA</sub> | 100     | °C/W |
| Junction to Case    | θ <sub>Jc</sub> | 2.87    | °C/W |



| Γ                                         | , · ·                                | · · · · · ·                                                       |            | r    |      |      |
|-------------------------------------------|--------------------------------------|-------------------------------------------------------------------|------------|------|------|------|
| PARAMETER                                 | SYMBOL                               | TEST CONDITIONS                                                   | MIN        | TYP  | MAX  | UNIT |
| OFF CHARACTERISTICS                       |                                      |                                                                   |            |      |      |      |
| Drain-Source Breakdown Voltage            | BV <sub>DSS</sub>                    | $V_{GS} = 0V, I_D = 250\mu A$ 60                                  |            |      |      | V    |
| Drain-Source Leakage Current              | I <sub>DSS</sub>                     | V <sub>DS</sub> = 600V, V <sub>GS</sub> = 0V                      |            |      | 10   | μA   |
| Gate-Source Leakage Current               | $V_{GS} = 30V, V_{DS} = 0V$          |                                                                   |            | 100  | nA   |      |
| Reverse                                   | I <sub>GSS</sub>                     | $V_{GS}$ = -30V, $V_{DS}$ = 0V                                    |            |      | -100 | nA   |
| Breakdown Voltage Temperature Coefficient | $\triangle BV_{DSS} / \triangle T_J$ | I <sub>D</sub> =250µA, Referenced to 25°C                         |            | 0.4  |      | V/°C |
| ON CHARACTERISTICS                        |                                      |                                                                   |            |      |      |      |
| Gate Threshold Voltage                    | V <sub>GS(TH)</sub>                  | $V_{DS} = V_{GS}, I_{D} = 250 \mu A$                              | 2.0        |      | 40   | V    |
| Static Drain-Source On-State Resistance   | R <sub>DS(ON)</sub>                  | V <sub>GS</sub> = 10V, I <sub>D</sub> =1.0A                       |            | 4.7  | 5.0  | Ω    |
| DYNAMIC CHARACTERISTICS                   |                                      |                                                                   |            |      |      |      |
| Input Capacitance                         | C <sub>ISS</sub>                     |                                                                   |            |      | 350  | pF   |
| Output Capacitance                        | Coss                                 | V <sub>DS</sub> =25V, V <sub>GS</sub> =0V, f =1MHz                | V, f =1MHz |      |      | рF   |
| Reverse Transfer Capacitance              | C <sub>RSS</sub>                     |                                                                   |            |      | 7    | pF   |
| SWITCHING CHARACTERISTICS                 |                                      |                                                                   |            |      |      |      |
| Total Gate Charge                         | $Q_{G}$                              |                                                                   |            | 16   | 20   | nC   |
| Gate-Source Charge                        | $Q_{GS}$                             | V <sub>DS</sub> =480V, V <sub>GS</sub> =10V, I <sub>D</sub> =2.4A |            | 3.8  |      | nC   |
| Gate-Drain Charge                         | $Q_{GD}$                             | (Note 1, 2)                                                       |            | 4.6  |      | nC   |
| Turn-On Delay Time                        | t <sub>D (ON)</sub>                  |                                                                   |            | 35   | 40   | ns   |
| Turn-On Rise Time                         | t <sub>R</sub>                       | $V_{DD}$ = 300V, $I_D$ = 2.4A, $R_G$ = 25 $\Omega$                |            | 50   | 60   | ns   |
| Turn-Off Delay Time                       | t <sub>D(OFF)</sub>                  | (Note 1, 2)                                                       |            | 85   | 100  | ns   |
| Turn-Off Fall Time                        | t <sub>F</sub>                       |                                                                   |            | 70   | 80   | ns   |
| DRAIN-SOURCE DIODE CHARACTERISTI          | CS                                   |                                                                   |            |      |      |      |
| Maximum Continuous Drain-Source Diode     |                                      |                                                                   |            |      | 2.0  |      |
| Forward Current                           | Is                                   |                                                                   |            |      | 2.0  | A    |
| Maximum Pulsed Drain-Source Diode         |                                      |                                                                   |            |      | 8.0  | Α    |
| Forward Current                           | I <sub>SM</sub>                      |                                                                   |            |      | 0.0  | А    |
| Drain-Source Diode Forward Voltage        | V <sub>SD</sub>                      | V <sub>GS</sub> =0V, I <sub>S</sub> =2.0A                         |            |      | 1.4  | V    |
| Reverse Recovery Time                     | t <sub>rr</sub>                      | V <sub>GS</sub> =0V, I <sub>S</sub> =2.4A,                        | 90         | 100  | 130  | ns   |
| Reverse Recovery Charge                   | Qrr                                  | di/dt=100A/µs(Note1)                                              |            | 0.72 |      | μC   |

#### ■ ELECTRICAL CHARACTERISTICS (T<sub>J</sub>=25°C, unless otherwise specified)


Notes: 1. Pulse Test : Pulse width  $\leq$  300µs, Duty cycle  $\leq$  2%.

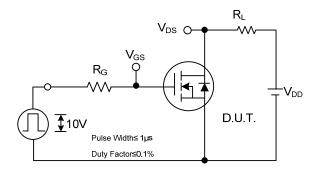

2. Essentially independent of operating ambient temperature.

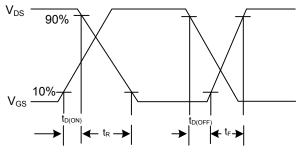


# F2N60

# TEST CIRCUITS AND WAVEFORMS






# F2N60

112

### **TEST CIRCUITS AND WAVEFORMS**





**Switching Waveforms** 

Switching Test Circuit

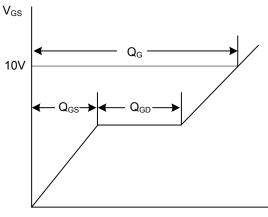
.3ul


◄

3mA€∏

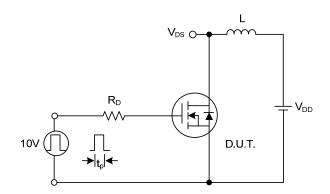
50kΩ

0.2uł


V<sub>GS</sub> O

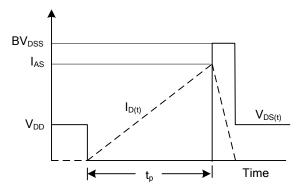


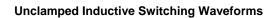
ISame Type I as D.U.T.


DUT

 $V_{DS}$ 

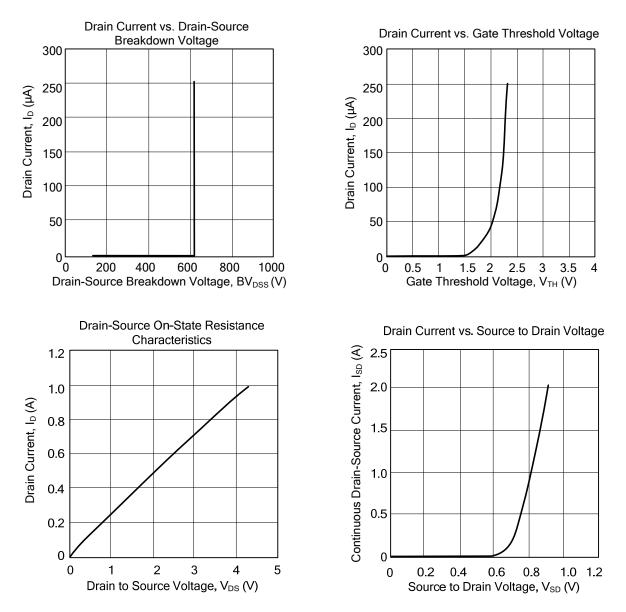







**Unclamped Inductive Switching Test Circuit** 


**Gate Charge Waveform** 







### TYPICAL CHARACTERISTICS



UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

