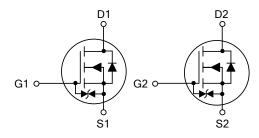


UM6K1N Power MOSFET

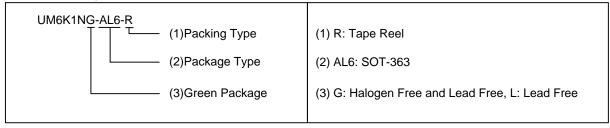
SILICON N-CHANNEL MOSFET

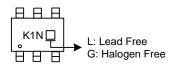
■ DESCRIPTION


The UTC **UM6K1N** is a silicon N-channel MOSFET. it uses UTC's advanced technology to provide the customers with a minimum on state resistance, high switching speed and low gate threshold voltage.

The UTC ${\bf UM6K1N}$ is suitable for switching and interfacing applications.

- * $R_{DS(on)} \le 8.0 \Omega$ @ $V_{GS}=4V$, $I_D=10mA$ $R_{DS(on)} \le 13 \Omega$ @ $V_{GS}=2.5V$, $I_D=1.0mA$
- * High switching speed
- * Low gate threshold voltage


■ SYMBOL


■ ORDERING INFORMATION

Ordering Number		Dardina	Pin Assignment					Doolsing		
Lead Free	Halogen Free	Package	1	2	3	4	5	6	Packing	
UM6K1NL-AL6-R	UM6K1NG-AL6-R	SOT-363	S1	G1	D2	S2	G2	D1	Tape Reel	

Note: Pin Assignment: G: Gate D: Drain S: Source

■ MARKING

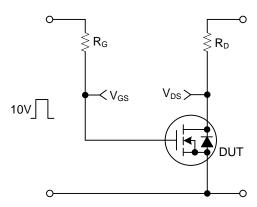
<u>www.unisonic.com.tw</u> 1 of 3

UM6K1N

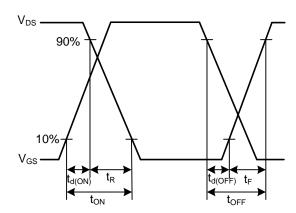
■ **ABSOLUTE MAXIMUM RATINGS** (T_A=25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V_{DSS}	30	V
Gate-Source Voltage		\ /	20	V
		V_{GSS}	-12	V
Dunin Commont	Continuous	I _D	100	mA
Drain Current	Pulsed (Note 1)	I _{DM}	200	mA
Power Dissipation (Note 2)	T _C =25°C	P_{D}	150	mW
Channel Temperature		T_CH	150	°C
Storage Temperature Range		T_{STG}	-55~+150	°C

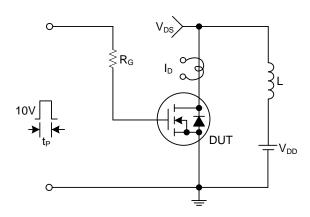
Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

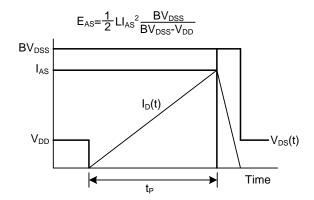

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. Pw \leq 10µs, Duty cycle \leq 50%.
- 3. With each pin mounted on the recommended lands.


■ ELECTRICAL CHARACTERISTICS (T_A=25°C, unless otherwise specified)

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS							
Drain-Source Breakdown Voltage		BV_{DSS}	$I_D=10\mu A, V_{GS}=0V$	30			V
Drain-Source Leakage Current		I_{DSS}	V _{DS} =30V, V _{GS} =0V			1.0	μΑ
Gate-Source Leakage Current	Forward	Lana	V _{GS} =+20V, V _{DS} =0V			+5	μΑ
	Reverse	I _{GSS}	V _{GS} =-12V, V _{DS} =0V			-5	μΑ
ON CHARACTERISTICS							
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{DS}=3V$, $I_{D}=100\mu A$	0.8		1.5	V
Static Drain-Source On-State Resistance		R _{DS(ON)}	V _{GS} =4V, I _D =10mA		5	8	Ω
			V _{GS} =2.5V, I _D =1mA		7	13	Ω
Forward Transfer Admittance		Y _{FS}	$V_{DS}=3V$, $I_{D}=10mA$				mS
DYNAMIC PARAMETERS							
Input Capacitance		C_{ISS}			13		pF
Output Capacitance		Coss	V _{GS} =0V, V _{DS} =5V, f=1.0MHz		9		pF
Reverse Transfer Capacitance		C_{RSS}			4		pF
SWITCHING PARAMETERS							
Turn-ON Delay Time		t _{D(ON)}			15		ns
Rise Time		t_R	V _{DD} ≈5V, V _{GS} =5V, I _D =10mA,		35		ns
Turn-OFF Delay Time		t _{D(OFF)}	R_{GS} =10 Ω , R_L =500 Ω		80		ns
Fall-Time		t_{F}		·	80		ns


■ TEST CIRCUITS AND WAVEFORMS


Resistive Switching Test Circuit

Resistive Switching Waveforms

Unclamped Inductive Switching Test Circuit

Unclamped Inductive Switching Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.