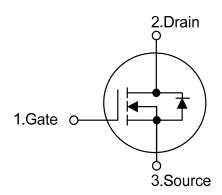


UNISONIC TECHNOLOGIES CO., LTD

7N60L Power MOSFET

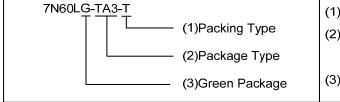
7.4 Amps, 600Volts N-CHANNEL MOSFET


DESCRIPTION

The UTC 7N60L is a high voltage MOSFET and is designed to have better characteristics, such as fast switching time, low gate charge, low on-state resistance and have a high rugged avalanche characteristics. This power MOSFET is usually used at high speed switching applications in switching power supplies and adaptors.

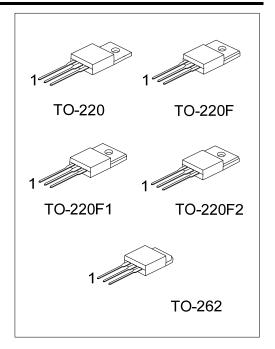
FEATURES

- * $R_{DS(ON)} \le 1.2 \Omega$ @ V_{GS} =10V, I_D =3.7A
- * Ultra low gate charge (typical 29 nC)
- * Low reverse transfer Capacitance (C_{RSS} = typical 16pF)
- * Fast switching capability
- * Avalanche energy tested
- * Improved dv/dt capability, high ruggedness

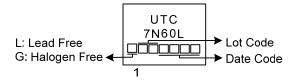

SYMBOL

ORDERING INFORMATION

Ordering Number		Dookaga	Pin Assignment			Dooking	
Lead Free Plating	Halogen Free	Package	1	2	3	Packing	
7N60LL-TA3-T	7N60LG-TA3-T	TO-220	G	D	S	Tube	
7N60LL-TF1-T	7N60LG-TF1-T	TO-220F1	G	D	S	Tube	
7N60LL-TF2-T	7N60LG-TF2-T	TO-220F2	G	D	S	Tube	
7N60LL-TF3-T	7N60LG-TF3-T	TO-220F	G	D	S	Tube	
7N60LL-T2Q-T	Q-T 7N60LG-T2Q-T		G	D	S	Tube	


Note: Pin Assignment: G: Gate D: Drain S: Source

- (1) T: Tube
- (2) TA3: TO-220, TF1: TO220-F1,


TF2: TO-220F2, TF3: TO-220F, T2Q: TO-262

(3) G: Halogen Free and Lead Free, L: Lead Free

www.unisonic.com.tw 1 of 8

MARKING

■ ABSOLUTE MAXIMUM RATINGS (T_C = 25°C, unless otherwise specified)

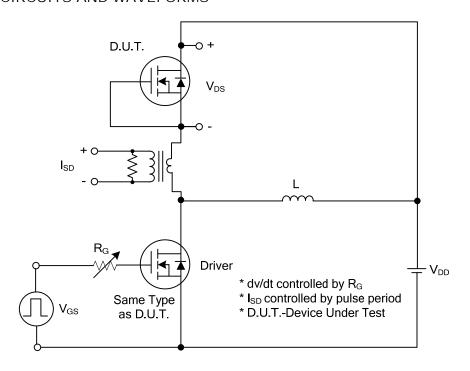
PARAMETER		SYMBOL	RATINGS	UNIT	
Drain-Source Voltage		V_{DSS}	600	V	
Gate-Source Voltage		V_{GSS}	±30	V	
Avalanche Current (Note 2)		I _{AR}	7.4	Α	
Continuous Drain Current		Ι _D	7.4	Α	
Pulsed Drain Current (Note 1)		I_{DM}	29.6	Α	
Avalanche Energy	Single Pulsed (Note 3)	E _{AS}	600	mJ	
	Repetitive (Note 2)	E _{AR}	14.2	mJ	
Peak Diode Recovery dv/dt (Note 4)		dv/dt	4.5	V/ns	
Power Dissipation	TO-220/TO-262		142	W	
	TO-220F/TO-220F1 TO-220F2	P_D	48	W	
Junction Temperature		T_J	+150	°C	
Storage Temperature		T _{STG}	-55 ~ +150	°C	

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

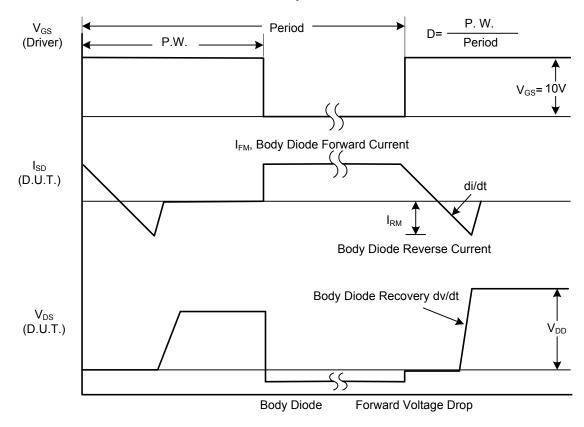
- 2. Repetitive Rating: Pulse width limited by maximum junction temperature
- 3. L = 22mH, I_{AS} = 7.4A, V_{DD} = 50V, R_{G} = 25 Ω , Starting T_{J} = 25°C
- 4. $I_{SD} \le 7.4 \text{A}$, di/dt $\le 200 \text{A}/\mu\text{s}$, $V_{DD} \le \text{BV}_{DSS}$, Starting $T_J = 25 ^{\circ}\text{C}$

■ THERMAL DATA

PARAMETER		SYMBOL	RATINGS	UNIT
Junction to Ambient		θ_{JA}	62.5	°C/W
	TO-220/TO-262		0.88	°C/W
Junction to Case	TO-220F/TO-220F1 TO-220F2	θ_{JC}	2.6	°C/W

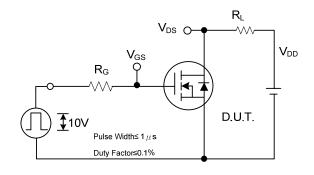

■ ELECTRICAL CHARACTERISTICS (T_C =25°C, unless otherwise specified)

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS							
Drain-Source Breakdown Voltage		BV _{DSS}	$V_{GS} = 0V, I_{D} = 250\mu A$	600			V
Drain-Source Leakage Current		I _{DSS}	$V_{DS} = 600V, V_{GS} = 0V$			1	μΑ
Gate- Source Leakage Current	Forward	I _{GSS}	$V_{GS} = 30V, V_{DS} = 0V$			100	nA
	Reverse		$V_{GS} = -30V, V_{DS} = 0V$			-100	nA
Breakdown Voltage Temperature Coefficient		△BV _{DSS} /△T _J	$I_D = 250\mu A$, Referenced to 25°C		0.67		V/°C
ON CHARACTERISTICS				_			_
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2.0		4.0	V
Static Drain-Source On-State Resistance		R _{DS(ON)}	$V_{GS} = 10V, I_D = 3.7A$			1.2	Ω
DYNAMIC CHARACTERISTICS	3						
Input Capacitance	put Capacitance		V _{DS} =25V, V _{GS} =0V, f=1.0 MHz			1400	pF
Output Capacitance		Coss				180	pF
Reverse Transfer Capacitance		C _{RSS}			16	21	pF
SWITCHING CHARACTERISTIC	CS						
Total Gate Charge		Q_{G}	V _{DS} =480V, I _D =7.4A, V _{GS} =10 V (Note 1, 2)		29	38	nC
Gate-Source Charge		Q_GS			7		nC
Gate-Drain Charge		Q_GD	(Note 1, 2)		14.5		nC
Turn-On Delay Time		$t_{D(ON)}$				70	ns
Turn-On Rise Time		t_R	V_{DD} =300V, I_{D} =7.4A, R_{G} =25 Ω			170	ns
Turn-Off Delay Time	Turn-Off Delay Time		(Note 1, 2)			140	ns
Turn-Off Fall Time		t _F				130	ns
DRAIN-SOURCE DIODE CHAR	ACTERISTIC	CS AND MAXI	MUM RATINGS				
Maximum Continuous Drain-Sou	rce Diode	I _S				7.4	Α
Forward Current		.5				ļ	
Maximum Pulsed Drain-Source I Forward Current	Diode	I _{SM}				29.6	Α
Drain-Source Diode Forward Voltage		V _{SD}	$V_{GS} = 0V, I_S = 7.4 A$			1.4	V
Reverse Recovery Time		t _{rr}	$V_{GS} = 0V$, $I_S = 7.4$ A,		320		ns
Reverse Recovery Charge		Q _{rr}	dI _F / dt = 100A/μs (Note 1)		2.4		μC


Notes: 1. Pulse Test : Pulse width \leq 300 μ s, Duty cycle \leq 2%.

^{2.} Essentially independent of operating temperature.

■ TEST CIRCUITS AND WAVEFORMS


Peak Diode Recovery dv/dt Test Circuit

Peak Diode Recovery dv/dt Waveforms

7N60L **Power MOSFET**

TEST CIRCUITS AND WAVEFORMS

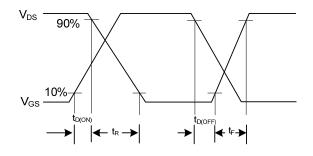
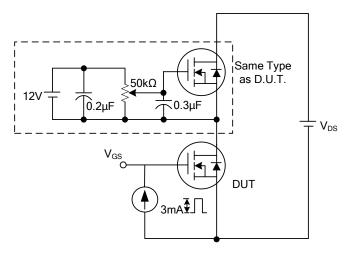



Fig. 2A Switching Test Circuit Fig. 2B Switching Waveforms

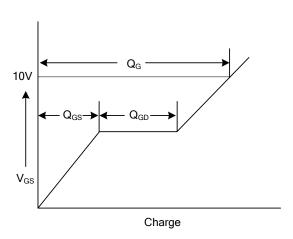
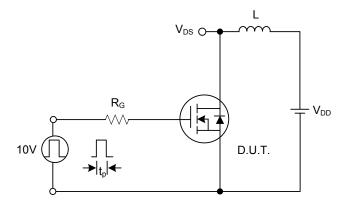
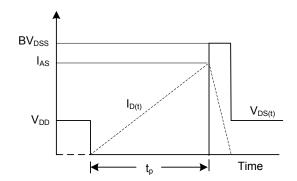
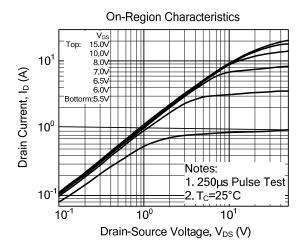
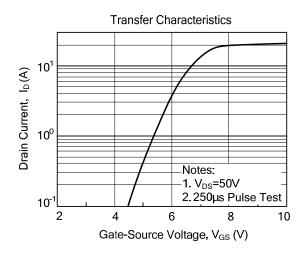
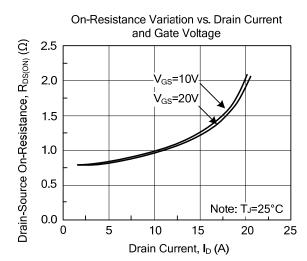
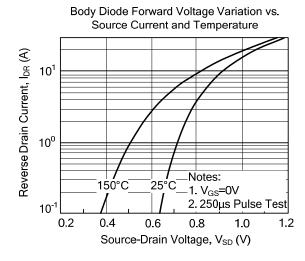



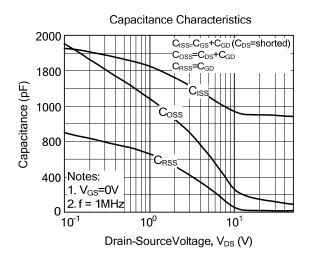
Fig. 3A Gate Charge Test Circuit

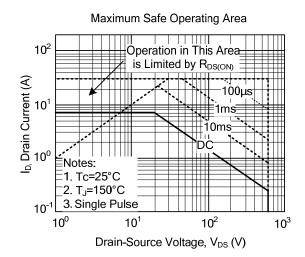
Fig. 3B Gate Charge Waveform


Fig. 4A Unclamped Inductive Switching Test Circuit


Fig. 4B Unclamped Inductive Switching Waveforms


TYPICAL CHARACTERISTICS



UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.