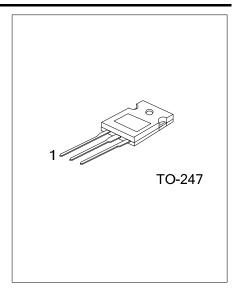


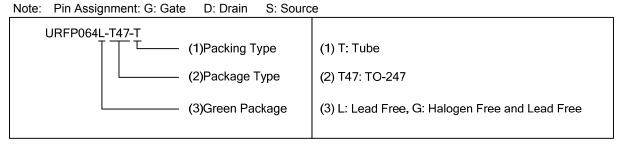
## UNISONIC TECHNOLOGIES CO., LTD

### URFP064 Preliminary Power MOSFET

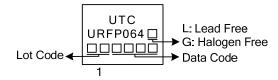

# 70A, 60V N-CHANNEL POWER MOSFET

#### ■ DESCRIPTION

The UTC **URFP064** is an N-channel enhancement power MOSFET using UTC's advanced technology to provide the customers with a minimum on-state resistance and high switching speed.


#### ■ FEATURES

- \*  $R_{DS(ON)}$ <10m $\Omega$  @  $V_{GS}$ =10V,  $I_D$ =35A
- \* High Switching Speed




#### ■ ORDERING INFORMATION

| L | Ordering Number |                | Deelsess | Pin Assignment |   |   | Daakina |  |
|---|-----------------|----------------|----------|----------------|---|---|---------|--|
| Ī | Lead Free       | Halogen Free   | Package  | 1              | 2 | 3 | Packing |  |
| Ī | URFP064L-T47-T  | URFP064G-T47-T | TO-247   | G              | D | S | Tube    |  |



#### MARKING



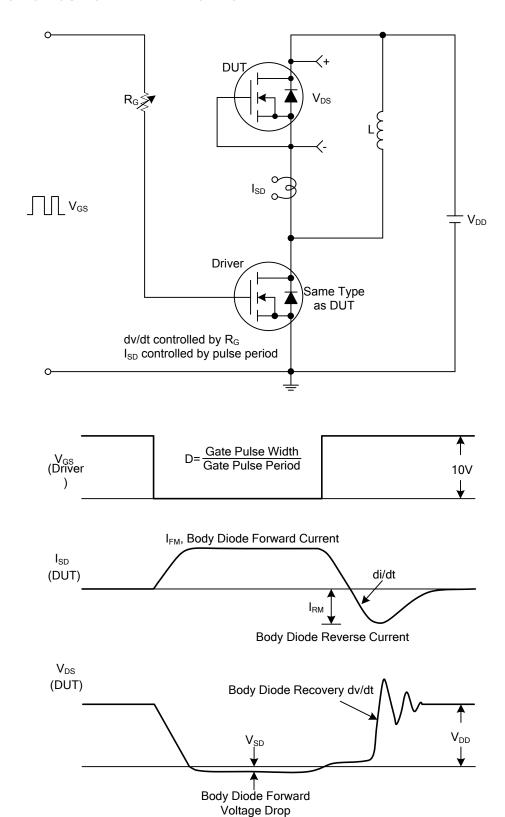
<u>www.unisonic.com.tw</u> 1 of 5

#### ABSOLUTE MAXIMUM RATINGS

| PARAMETER Drain-Source Voltage Gate-Source Voltage                                        |                 | SYMBOL           | RATINGS            | UNIT |  |
|-------------------------------------------------------------------------------------------|-----------------|------------------|--------------------|------|--|
|                                                                                           |                 | $V_{DSS}$        | 60                 | V    |  |
|                                                                                           |                 | $V_{GSS}$        | ±20                | V    |  |
| Drain Current                                                                             | Continuous      | I <sub>D</sub>   | 70                 | Α    |  |
|                                                                                           | Pulsed (Note 2) | I <sub>DM</sub>  | 280                |      |  |
| Single Pulsed Avalanche Energy Power Dissipation Junction Temperature Storage Temperature |                 | E <sub>AS</sub>  | 1500               | mJ   |  |
|                                                                                           |                 | $P_{D}$          | 190                | W    |  |
|                                                                                           |                 | $T_J$            | -55 ~ <b>+</b> 150 | °C   |  |
|                                                                                           |                 | T <sub>STG</sub> | -55 ~ <b>+</b> 150 | °C   |  |

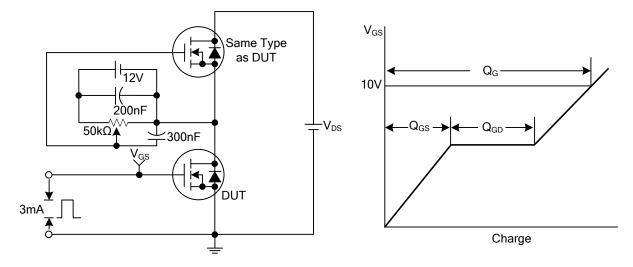
- Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

  Absolute maximum ratings are stress ratings only and functional device operation is not implied.
  - 2. Repetitive Rating: Pulse width limited by maximum junction temperature.
  - 3. L = 120mH,  $I_{AS}$  = 5.0A,  $V_{DD}$  = 25V,  $R_{G}$  = 25  $\Omega.$


#### ■ ELECTRICAL CHARACTERISTICS

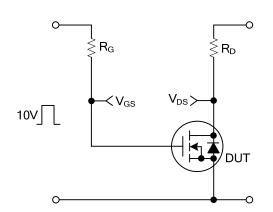
| PARAMETER                                                    |            | SYMBOL              | TEST CONDITIONS                                                                             | MINI | TVD  | MAY  | UNIT     |
|--------------------------------------------------------------|------------|---------------------|---------------------------------------------------------------------------------------------|------|------|------|----------|
|                                                              | STIMBOL    | TEST CONDITIONS     | MIN                                                                                         | TYP  | MAX  | UNIT |          |
| OFF CHARACTERISTICS                                          | _          | D\/                 | L -250A \/ -0\/                                                                             | 60   |      |      | V        |
| Drain-Source Breakdown Voltage                               |            | BV <sub>DSS</sub>   | I <sub>D</sub> =250μA, V <sub>GS</sub> =0V                                                  | 60   |      |      | <u> </u> |
| Drain-Source Leakage Current                                 |            | I <sub>DSS</sub>    | $V_{DS}$ =60V, $V_{GS}$ =0V                                                                 |      |      | 10   | μΑ       |
| Gate-Source Leakage Current                                  | Forward    | l <sub>GSS</sub>    | V <sub>GS</sub> =+20V, V <sub>DS</sub> =0V                                                  |      |      | +100 | nA       |
| Cate Course Loundays Carront                                 | Reverse    | 1000                | $V_{GS}$ =-20V, $V_{DS}$ =0V                                                                |      |      | -100 | nA       |
| ON CHARACTERISTICS                                           |            |                     |                                                                                             |      |      |      |          |
| Gate Threshold Voltage                                       |            | $V_{GS(TH)}$        | $I_D=250\mu A, V_{DS}=V_{GS}$                                                               | 2.0  |      | 4.0  | V        |
| Static Drain-Source On-State Re                              | esistance  | R <sub>DS(ON)</sub> | $V_{GS}$ =10V, $I_D$ =35A                                                                   |      |      | 10   | mΩ       |
| DYNAMIC PARAMETERS                                           |            |                     |                                                                                             |      |      |      |          |
| Input Capacitance                                            |            | C <sub>ISS</sub>    | \/ -0\/ \/ -25\/                                                                            |      | 3800 |      | pF       |
| Output Capacitance                                           |            | Coss                | V <sub>GS</sub> =0V, V <sub>DS</sub> =25V,<br>f=1.0MHz                                      |      | 960  |      | pF       |
| Reverse Transfer Capacitance                                 |            | $C_{RSS}$           | 1-1.01VII 12                                                                                |      | 75   |      | pF       |
| SWITCHING PARAMETERS                                         |            |                     |                                                                                             |      |      |      |          |
| Total Gate Charge Gate to Source Charge Gate to Drain Charge |            | $Q_G$               | \/ -E0\/ \/ -10\/                                                                           |      | 265  |      | nC       |
|                                                              |            | $Q_GS$              | V <sub>DD</sub> =50V, V <sub>GS</sub> =10V,<br>I <sub>D</sub> =1.3A, I <sub>G</sub> =100µA, |      | 30   |      | nC       |
|                                                              |            | $Q_GD$              | ID-1.3A, IG-100μA,                                                                          |      | 60   |      | nC       |
| Turn-ON Delay Time                                           |            | t <sub>D(ON)</sub>  |                                                                                             |      | 152  |      | ns       |
| Rise Time                                                    |            | $t_R$               | $V_{DD}$ =30V, $I_{D}$ =0.5A,                                                               |      | 304  |      | ns       |
| Turn-OFF Delay Time                                          |            | t <sub>D(OFF)</sub> | $R_G=25\Omega$ , $V_{GS}=10V$                                                               |      | 600  |      | ns       |
| Fall-Time                                                    |            | $t_{F}$             |                                                                                             |      | 310  |      | ns       |
| SOURCE- DRAIN DIODE RATII                                    | NGS AND CH | ARACTERIS'          | TICS                                                                                        |      |      |      |          |
| Maximum Body-Diode Continuou                                 | us Current | Is                  |                                                                                             |      |      | 70   | Α        |
| Maximum Body-Diode Pulsed Current                            |            | I <sub>SM</sub>     |                                                                                             |      |      | 280  | Α        |
| Drain-Source Diode Forward Voltage                           |            | $V_{SD}$            | I <sub>S</sub> =70A, V <sub>GS</sub> =0V                                                    |      |      | 1.28 | V        |
| Body Diode Reverse Recovery Time (Note 1)                    |            | t <sub>rr</sub>     | I <sub>S</sub> =70A, V <sub>GS</sub> =0V<br>dI <sub>F</sub> /dt=100A/μs                     |      | 74   |      | ns       |
| Body Diode Reverse Recovery Charge                           |            | $Q_{rr}$            |                                                                                             |      | 0.2  |      | μC       |

Notes: 1. Pulse Test : Pulse width  $\leq$  300 $\mu$ s, Duty cycle  $\leq$  2%.

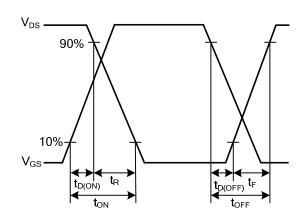

2. Essentially independent of operating temperature.

#### ■ TEST CIRCUITS AND WAVEFORMS

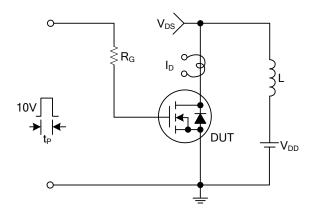



Peak Diode Recovery dv/dt Test Circuit and Waveforms

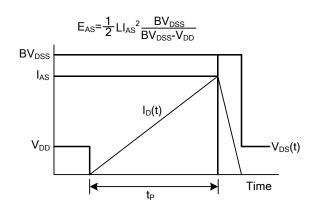
■ TEST CIRCUITS AND WAVEFORMS (Cont.)




**Gate Charge Test Circuit** 


**Gate Charge Waveforms** 




**Resistive Switching Test Circuit** 



**Resistive Switching Waveforms** 



**Unclamped Inductive Switching Test Circuit** 



**Unclamped Inductive Switching Waveforms** 

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

