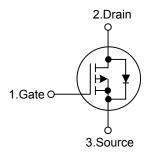


Power MOSFET

-100A, -30V P-CHANNEL POWER MOSFET

DESCRIPTION

The UTC **UTT100P03** is a P-channel power MOSFET using UTC's advanced technology to provide the customers with high switching speed and a minimum on-state resistance. It can also withstand high energy in the avalanche.

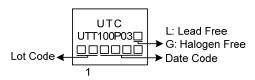

The UTC **UTT100P03** is suitable for low voltage and high speed switching applications

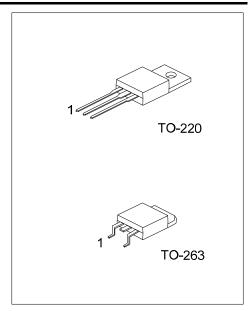
FEATURES

* $R_{DS(ON)} \le 4.3 m\Omega$ @ V_{GS} =-10V, I_{D} =-80A

- $R_{DS(ON)} \le 7.6 \text{m}\Omega @ V_{GS} = -4.5 \text{V}, I_D = -50 \text{A}$
- * High Switching Speed

SYMBOL


ORDERING INFORMATION


Ordering Number		Deekage	Pin Assignment			Deaking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
UTT100P03L-TA3-T	UTT100P03G-TA3-T	TO-220	G	D	S	Tube	
UTT100P03L-TQ2-T	UTT100P03G-TQ2-T	TO-263	G	D	S	Tube	
UTT100P03L-TQ2-R	UTT100P03G-TQ2-R	TO-263	G	D	S	Tape Reel	
Note: Dia Assistante di Cata Di Diain. Ci Course							

Note: Pin Assignment: G: Gate D: Drain S: Source

UTT100P03G-TA3-T		
	(1)Packing Type	(1) T: Tube, R: Tape Reel
	(2)Package Type	(2) TA3: TO-220, TQ2: TO-263
	(3)Green Package	(3) G: Halogen Free and Lead Free, L: Lead Free

MARKING

■ ABSOLUTE MAXIMUM RATINGS (TJ=25°C, unless otherwise specified)

PARAMETER			SYMBOL	RATINGS	UNIT
Drain-Source Voltage			V _{DSS}	-30	V
Gate-Source Voltage		V _{GSS}	-16	V	
Drain Current	Continuous (Note 2)	T _C =25°C, V _{GS} =-10V	I _D	-100	А
	Pulsed (Note 3)	T _C =25°C	I _{DM}	-200	А
Power Dissipation T _c =25°C		PD	120	W	
Junction Temperature		TJ	+150	°C	
Storage Temperature			T _{STG}	-55 ~ +150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

3. Defined by design. Not subject to production test.

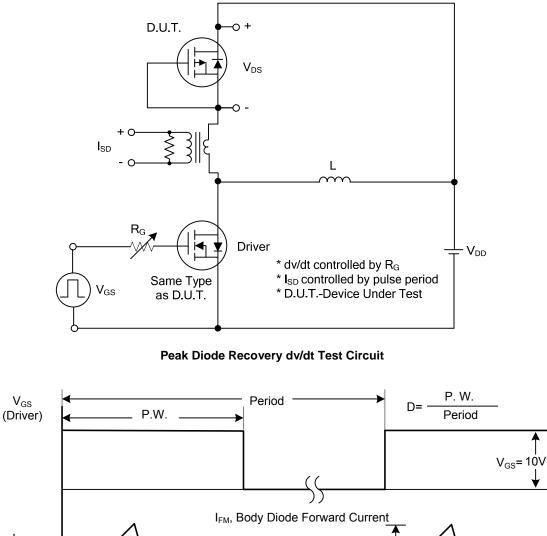
THERMAL DATA

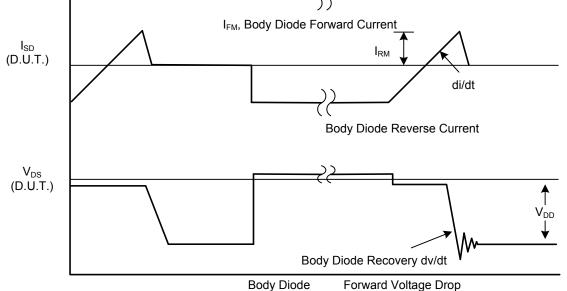
PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ _{JA}	62.5	°C/W
Junction to Case	θ」	1.04	°C/W

Note: Defined by design. Not subject to production test.

■ ELECTRICAL CHARACTERISTICS (T_J=25°C, unless otherwise specified)

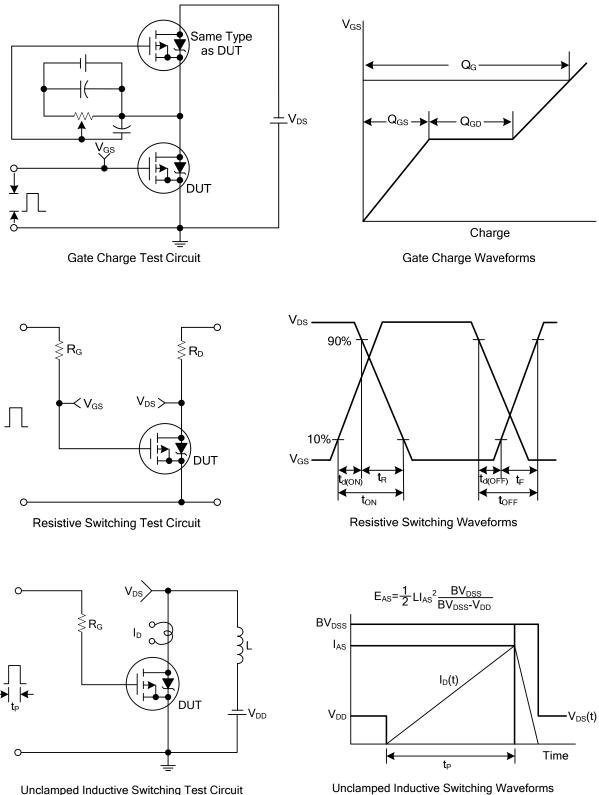
PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS							
Drain-Source Breakdown Voltage		BV _{DSS}	I _D =-250μA, V _{GS} =0V	-30			V
Drain-Source Leakage Current		I _{DSS}	V _{DS} =-30V, V _{GS} =0V, T _J =25°C		-0.1	-1	μA
Gate-Source Leakage Current	Forward	- I _{GSS}	V _{GS} =+16V, V _{DS} =0V		+10	+100	nA
	Reverse		V _{GS} =-16V, V _{DS} =0V		-10	-100	nA
ON CHARACTERISTICS							
Gate Threshold Voltage		V _{GS(TH)}	V _{DS} =V _{GS} , I _D =-250µA	-1.0	-1.5	-2.1	V
Static Drain-Source On-State Resistance			V _{GS} =-4.5V, I _D =-50A		5.6	7.6	mΩ
		R _{DS(ON)}	V _{GS} =-10, I _D =-80A		3.9	4.3	mΩ
DYNAMIC PARAMETERS (Note	e 1)						
Input Capacitance	nput Capacitance				9500		рF
Output Capacitance		C _{OSS}	V _{GS} =0V, V _{DS} =-25V, f=1.0MHz		1320		рF
Reverse Transfer Capacitance		C _{RSS}			920		рF
SWITCHING PARAMETERS (N	lote 1)						
Total Gate Charge		Q_{G}			180		nC
Gate to Source Charge		Q _{GS}	V _{DD} =-15V, V _{GS} =-10V, I _D =-100A		28		nC
Gate to Drain Charge		Q_{GD}			35		nC
Turn-ON Delay Time		t _{D(ON)}			16		ns
Rise Time		t _R	V _{DD} =-15V, V _{GS} =-10V, I _D =-100A		20		ns
Turn-OFF Delay Time		t _{D(OFF)}	VDD10V, VGS10V, ID100A		175		ns
Fall-Time	Fall-Time				126		ns
SOURCE- DRAIN DIODE RATI	NGS AND	CHARACTE	RISTICS				
Maximum Body-Diode Continuous Current		ls	T _A = 25°C (Note 1)			-100	Α
Maximum Body-Diode Pulsed Current		I _{SM}	T _A = 25°C (Note 1)			-200	А
Drain-Source Diode Forward Voltage		V _{SD}	I _S =-80A, V _{GS} =0V			-1.2	V
Body Diode Reverse Recovery Time		t _{rr}	V _R =-30V, I _F =-30A, 15		152		ns
Body Diode Reverse Recovery Charge		Q _{rr}	dI _F /dt=100A/µs (Note 1)		0.45		μC
Notoo: 1 Defined by design Not		1 12 1			_	-	


Notes: 1. Defined by design. Not subject to production test.

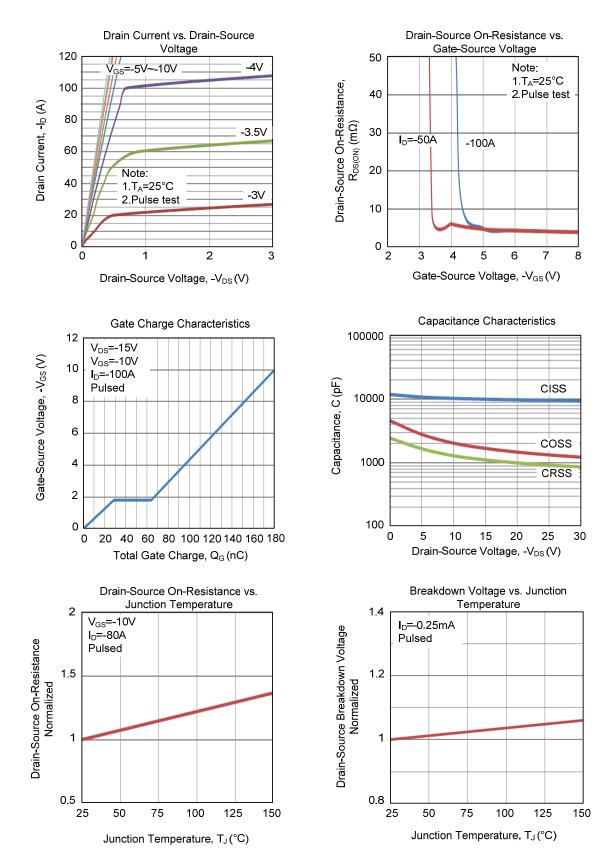

2. Device on 40 mm x 40 mm x 1.5 mm epoxy PCB FR4 with 6 cm² (one layer, 70 μm thick) copper area for drain connection. PCB is vertical in still air.

^{2.} Current is limited by bondwire; with a θ_{JC} = 0.65 °C/W the chip is able to carry I_D=-195A at 25°C.

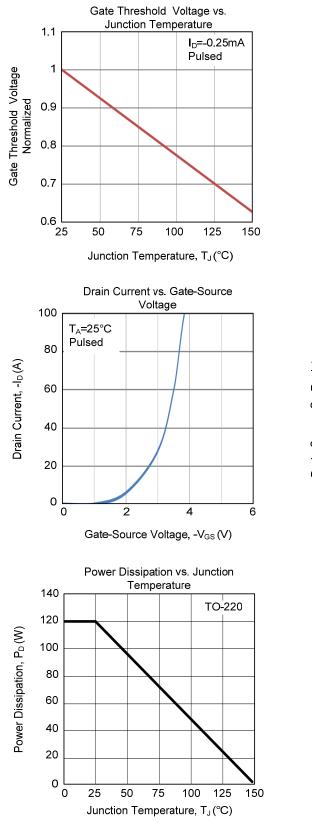
TEST CIRCUITS AND WAVEFORMS

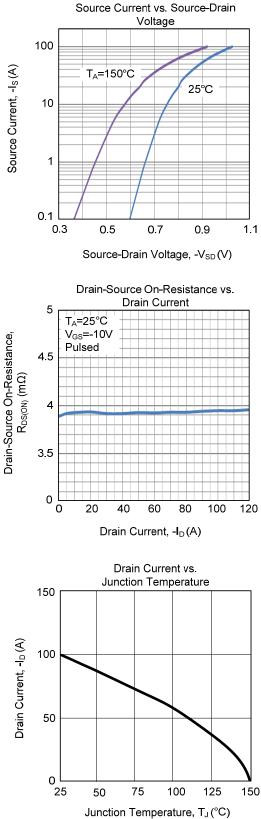


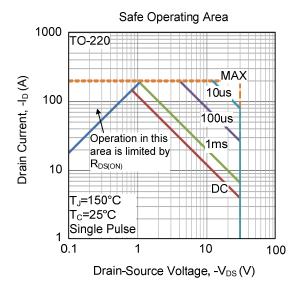
Peak Diode Recovery dv/dt Waveforms


TEST CIRCUITS AND WAVEFORMS

www.unisonic.com.tw


UNISONIC TECHNOLOGIES CO., LTD


TYPICAL CHARACTERISTICS


TYPICAL CHARACTERISTICS (Cont.)

TYPICAL CHARACTERISTICS (Cont.)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

