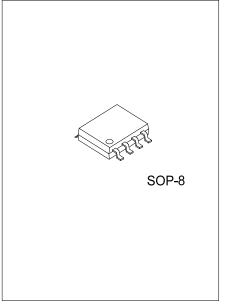


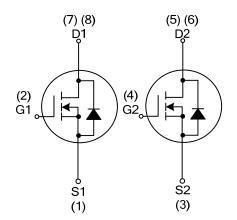
UNISONIC TECHNOLOGIES CO., LTD

UT6898

Power MOSFET

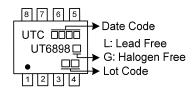

N-CHANNEL ENHANCEMENT

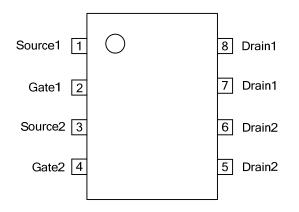
DESCRIPTION


The **UT6898** uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and operation with low gate voltages. This device is suitable for use as a load switch or in PWM applications.

FEATURES

- * $R_{DS(ON)} \le 14 \text{ m}\Omega @ V_{GS}=4.5V, I_D=9.4A$
- * $R_{DS(ON)} \le 18 \text{ m}\Omega @ V_{GS}=2.5V, I_D=8.3A$
- * Low capacitance
- * Low gate charge
- * Fast switching capability
- * Avalanche energy specified


SYMBOL


ORDERING INFORMATION

Ordering Number		Daakaga		Pin Assignment								Deaking	
Lead Free	Halogen Free	Package		1	2	3	4	5	6	7	8	Packing	
UT6898L-S08-R	UT6898G-S08-R	SOP-8		S1	G1	S2	G2	D2	D2	D1	D1	Tape Reel	
Note: Pin Assignment: G: Gate D: Drain S: Source													
UT6898G- <u>S08</u> -R (1)Packing Type (2)Package Type (3)Green Package)8: S	e Re OP-{ ogen	3	e and	d Lea	ad Fr	ree, L	L: Le	ad Free	

MARKING

■ PIN CONFIGURATION

■ ABSOLUTE MAXIMUM RATING (T_C=25°C, unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNIT	
Drain-Source Voltage	V _{DSS}	20	V	
Gate-Source Voltage	V _{GSS}	±12	V	
Continuous Drain Current	I _D	9.4	А	
Pulsed Drain Current	I _{DM}	38	А	
Maximum Power Dissipation	PD	3.1 (Note)	W	
Operating Junction and Storage Temperature Range	T _J , T _{STG}	-55 ~ +150	°C	

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

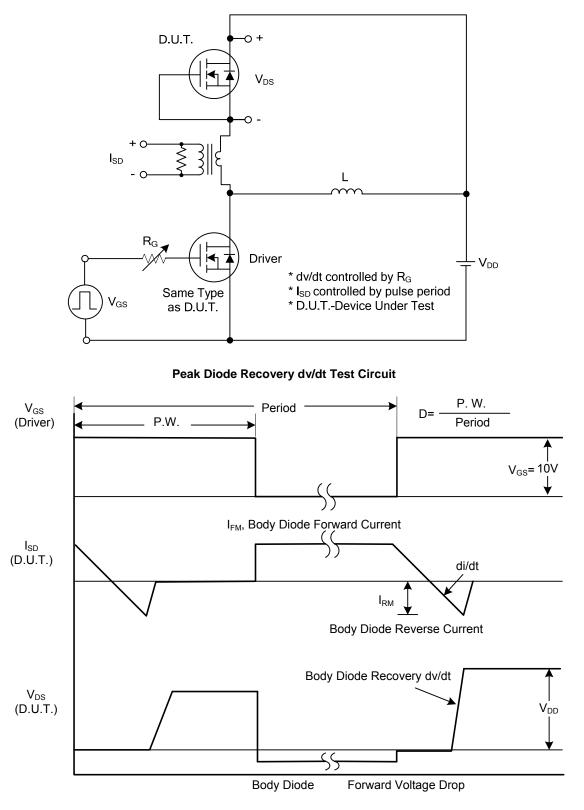
2. Device mounted on FR-4 substrate PC board, 2oz copper, with 1inch square copper plate.

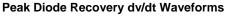
THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Junction-to-Case	θ _{JC}	40	°C/W

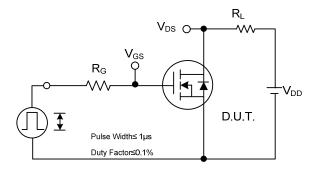
Note: Device mounted on FR-4 substrate PC board, 2oz copper, with 1inch square copper plate.

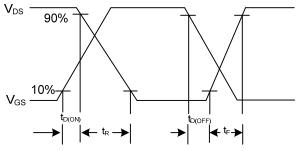
■ ELECTRICAL CHARACTERISTICS (T_J=25°C, unless otherwise specified)

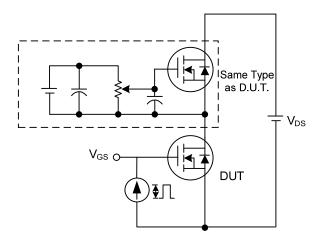

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
OFF CHARACTERISTICS								
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V, I _D =250µA	20			V		
Drain-Source Leakage Current	I _{DSS}	V _{GS} =0V, V _{DS} =16V			1	μA		
Gate-Source Leakage Current	I _{GSS}	V_{GS} =±12V, V_{DS} =0V,			±100	nA		
ON CHARACTERISTICS (Note 1)						-		
Gate Threshold Voltage	V _{GS(TH)}	V _{DS} =V _{GS} , I _D =250µA	0.5	1	1.5	V		
Drain-Source On-State Resistance	Б	V _{GS} =4.5V, I _D =9.4A		10	14	mΩ		
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =2.5V, I _D =8.3A		13	18	11122		
DYNAMIC CHARACTERISTICS								
Input Capacitance	CISS			2100		pF		
Output Capacitance	C _{OSS}	V _{GS} =0V, V _{DS} =10V, f=1MHz		530		pF		
Reverse Transfer Capacitance	C _{RSS}			450		pF		
SWITCHING PARAMETERS (Note 1)								
Total Gate Charge	Q_{G}			48		nC		
Gate Source Charge	Q _{GS}	V _{GS} =10V, V _{DS} =10V, I _D =9.4A		6.7		nC		
Gate Drain Charge	Q _{GD}			1.6		nC		
Turn-ON Delay Time	t _{D(ON)}			7		ns		
Turn-ON Rise Time	t _R	V _{GS} =10V,V _{DS} =10V, I _D =9.4A		18		ns		
Turn-OFF Delay Time	t _{D(OFF)}	R _G =6Ω		52		ns		
Turn-OFF Fall-Time	t⊨			24		ns		
SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS								
Maximum Body-Diode Continuous Current	Is				2.6	Α		
Drain-Source Diode Forward Voltage	V_{SD}	V _{GS} =0V, I _S =9.4A (Note 1)			1.2	V		

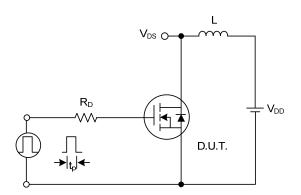

Notes: 1. Pulse Test: Pulse Width < 300ms, Duty Cycle < 2.0%

2. The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied

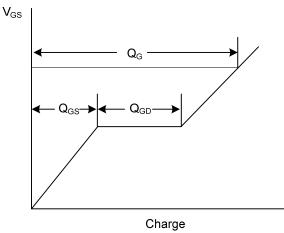

TEST CIRCUITS AND WAVEFORMS

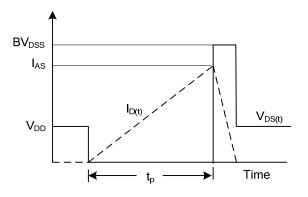



TEST CIRCUITS AND WAVEFORMS

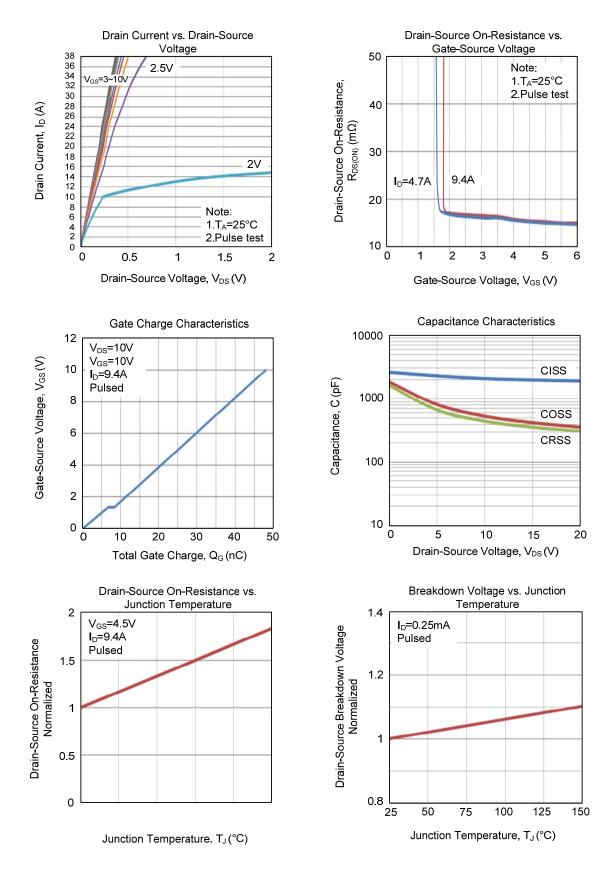


Switching Test Circuit

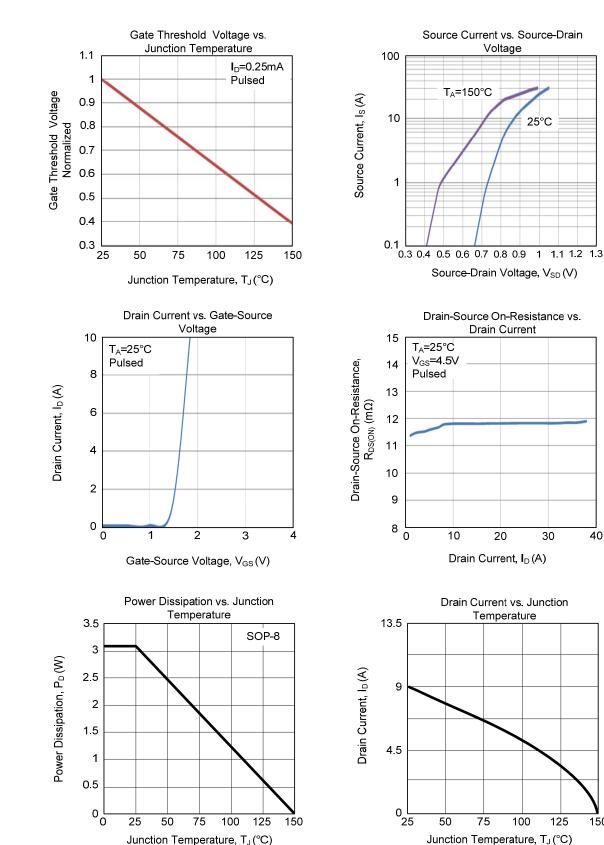



Gate Charge Test Circuit

Unclamped Inductive Switching Test Circuit

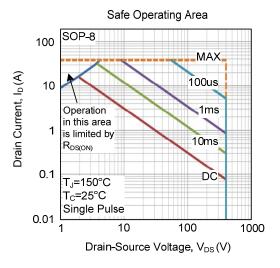


Unclamped Inductive Switching Waveforms



Power MOSFET

TYPICAL CHARACTERISTICS


TYPICAL CHARACTERISTICS (Cont.)

150

40

■ TYPICAL CHARACTERISTICS (Cont.)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

