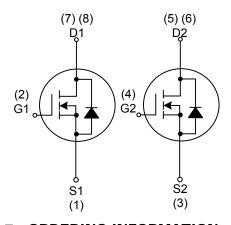
UNISONIC TECHNOLOGIES CO., LTD

UT4822 Power MOSFET

DUAL N-CHANNEL ENHANCEMENT MODE


■ DESCRIPTION

The **UT4822** can provide excellent $R_{DS(ON)}$ and low gate charge by using advanced trench technology. The **UT4822** is suitable for using as a load switch or in PWM applications.

■ FEATURES

- * 30V/8.5A
- * Low $R_{DS(ON)}$
- * Reliable and Rugged

■ SYMBOL

SOP-8 1 tree 1

■ ORDERING INFORMATION

Note: Pin Assignment: G: Gate

Ordering Number		Daakaga	Pin Assignment							Dooking	
Lead Free	Halogen Free	Package –		2	3	4	5	6	7	8	Packing
UT4822L-S08-R	UT4822G-S08-R	SOP-8	S1	G1	S2	G2	D2	D2	D1	D1	Tape Reel
UT4822L-P3030-R	UT4822G-P3030-R	PDFN3×3	S1	G1	S2	G G	D2	D2	D1	D1	Tape Reel
UT4822L-P5060-R	UT4822G-P5060-R	PDFN5×6	S1	G1	S2	G2	D2	D2	D1	D1	Tape Reel

S: Source

D: Drain

UT4822G-S08-R
(1)Packing Type
(1) R: Tape Reel
(2) S08: SOP-8, P3030: PDFN3×3, P5060: PDFN5×6
(3)Green Package
(3) G: Halogen Free and Lead Free, L: Lead Free

<u>www.unisonic.com.tw</u> 1 of 6

■ MARKING

PACKAGE	MARKING							
SOP-8	Date Code UTC UT4422 CHAPTER STREET UT4422 CHAPTER STREET L: Lead Free G: Halogen Free Lot Code							
PDFN3×3	UT 4422 • □□□□ Date Code							
PDFN5×6	UTC UT 4422 Lot Code Date Code							

UT4822 Power MOSFET

■ **ABSOLUTE MAXIMUM RATINGS** (T_A = 25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V_{DS}	30	V
Gate-Source Voltage		V_{GS}	±20	>
Continuous Drain Current		I_{D}	8.5	Α
Pulsed Drain Current		I _{DM}	40	Α
Power Dissipation (T _C =25°C)	SOP-8	P _D	1.2	W
	PDFN3×3		20	W
	PDFN5×6		22	W
Junction Temperature		TJ	+150	°C
Storage Temperature		T _{STG}	-55 ~ + 150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

PARAMETER		SYMBOL	RATINGS	UNIT
Junction to Ambient	SOP-8	θја	125	°C/W
	PDFN3×3		75	°C/W
	PDFN5×6		65	°C/W
Case to Ambient	SOP-8	$ heta_{ extsf{JC}}$	104	°C/W
	PDFN3×3		6.25	°C/W
	PDFN5×6		5.6	°C/W

Note: Device mounted on FR-4 substrate Pc board, 2oz copper, with 1inch square copper plate.

^{2.} Repetitive Rating: Pulse width limited by maximum junction temperature.

■ **ELECTRICAL CHARACTERISTICS** (T_A =25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT			
OFF CHARACTERISTICS									
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V, I _D =250uA	30			V			
Drain-Source Leakage Current	I _{DSS}	V _{DS} =24V, V _{GS} =0V			1	uA			
Gate-Source Leakage Current	I _{GSS}	V _{DS} =0V, V _{GS} =±20V			±100	nA			
ON CHARACTERISTICS									
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_D=250uA$	1.0		3.0	V			
Drain Cauras On Ctata Basistanas	R _{DS(ON)}	V _{GS} =10V, I _D =8.5A		16	19	mΩ			
Drain-Source On-State Resistance		V _{GS} =4.5V, I _D =6.0A		21	26	mΩ			
DYNAMIC CHARACTERISTICS									
Input Capacitance	C _{ISS}			560		pF			
Output Capacitance	Coss	V _{GS} =0V,V _{DS} =15V,f=1.0MHz		150		pF			
Reverse Transfer Capacitance	C _{RSS}			140		pF			
SWITCHING CHARACTERISTICS			_						
Total Gate Charge	Q_G	V 04V V 40V L 0.5A		23		nC			
Gate-Source Charge	Q_{GS}	V _{DS} =24V, V _{GS} =10V, I _D =8.5A (Note 1. 2)		2.5		nC			
Gate-Drain Charge	Q_GD	(Note 1, 2)		6		nC			
Turn-ON Delay Time	t _{D(ON)}			6		ns			
Turn-ON Rise Time	t _R	V_{DD} =15V, V_{GS} =10V, I_{D} =8.5A		16		ns			
Turn-OFF Delay Time	t _{D(OFF)}	R _G =3Ω (Note 1, 2)		18		ns			
Turn-OFF Fall Time	t _F			24		ns			
SOURCE- DRAIN DIODE RATINGS AND	CHARACTE	RISTICS		-	-				
Maximum Continuous Drain-Source Diode					8.5	Α			
Forward Current	I _S				6.5	A			
Maximum Pulsed Drain-Source Diode	I _{SM}				40	Α			
Forward Current	ISM				40	Α			
Drain-Source Diode Forward Voltage	V_{SD}	I _S =1A, V _{GS} =0V		0.76	1.0	V			
Reverse Recovery Time	t _{rr}	I _F =8.5A, dI _F /dt=100A/μs		480		ns			
Reverse Recovery Charge	Q _{rr}			7		μC			

Notes: 1. Pulse Test : Pulse width ≤ 300µs, Duty cycle ≤ 2%.

^{2.} Essentially independent of operating temperature.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.