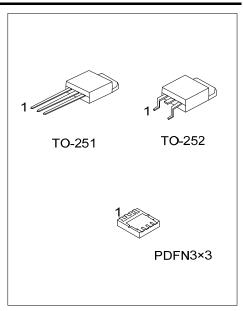
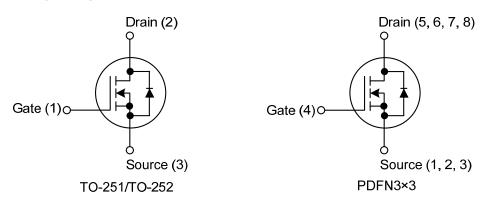
UNISONIC TECHNOLOGIES CO., LTD

UT40N03 **Power MOSFET**

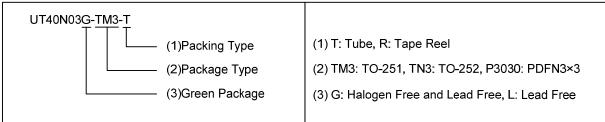

40 Amps, 30 Volts **N-CHANNEL POWER MOSFET**

DESCRIPTION

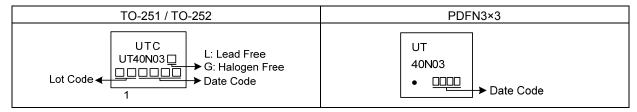

The UT40N03 power MOSFET provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness

FEATURES

- * $R_{DS(ON)} \le 17 \text{ m}\Omega @ V_{GS} = 10V, I_D = 20A$
- * Low capacitance
- * Optimized gate charge
- * Fast switching capability
- * Avalanche energy specified


SYMBOL

ORDERING INFORMATION


Ordering Number		Daakasa	Pin Assignment							Doolsing	
Lead Free	Halogen Free	Package	1	2	3	4	5	6	7	8	Packing
UT40N03L-TM3-T UT40N03G-TM3-T		TO-251	G	D	S	-	-	-	-	-	Tube
UT40N03L-TN3-R	UT40N03G-TN3-R	TO-252	G	D	S	-	-	-	-	-	Tape Reel
UT40N03L-P3030-R	UT40N03G-P3030-R	PDFN3×3	S	S	S	G	D	D	D	D	Tape Reel

Note: Pin Assignment: G: Gate D: Drain S: Source

UT40N03 Power MOSFET

MARKING

UT40N03 Power MOSFET

■ **ABSOLUTE MAXIMUM RATINGS** (T_J=25°C, unless otherwise specified)

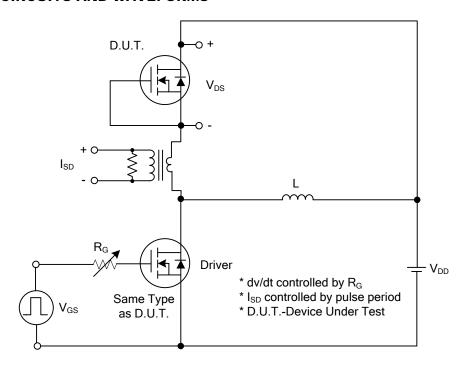
PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V_{DSS}	30	V
Gate-Source Voltage		V_{GSS}	±20	V
Continuous Drain Current		I_{D}	40	Α
Pulsed Drain Current (Note 1)		I_{DM}	80	Α
Total Dawar Dissination	TO-251/TO-252	P_D	48	W
otal Power Dissipation	PDFN3×3		20	W
Junction Temperature		T_J	+150	°C
Storage Temperature		T_{STG}	-55 ~ + 150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

PARAMETER		SYMBOL	RATINGS	UNIT
lungtion to Ambient	TO-251/TO-252	0	50	°C/W
Junction to Ambient	PDFN3×3	θ_{JA}	65	°C/W
lunation to Casa	TO-251/TO-252	θ_{JC}	2.6	°C/W
Junction to Case	PDFN3×3		6.25	°C/W

Note: Device mounted on FR-4 substrate PC board, 2oz copper, with 1inch square copper plate.

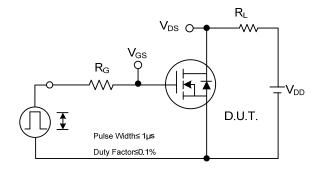

■ **ELECTRICAL CHARACTERISTICS** (T_A =25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
OFF CHARACTERISTICS			_		_		
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0 V, I _D =250 μA	30			V	
Drain-Source Leakage Current	I _{DSS}	V _{DS} =30 V, V _{GS} =0 V, T _J =25℃			1	μΑ	
Gate- Source Leakage Current	I _{GSS}	V _{GS} = ±20V			±100	nA	
ON CHARACTERISTICS							
Gate-Threshold Voltage	$V_{GS(TH)}$	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	1		3	V	
Drain-Source On-State Resistance	R _{DS(ON)}	V_{GS} =10 V, I_{D} =20 A		14	17	mΩ	
Drain-Source On-State Resistance		V _{GS} =4.5 V, I _D =16 A		20	23		
DYNAMIC PARAMETERS					-	-	
Input Capacitance	C _{ISS}			600			
Output Capacitance	Coss	V _{DS} =25 V, V _{GS} =0V, f=1.0MHz		145		pF	
Reverse Transfer Capacitance	C _{RSS}			125			
SWITCHING PARAMETERS							
Total Gate Charge	Q_{G}			24			
Gate-Source Charge	Q_{GS}	V _{DS} =15V, V _{GS} =10V, I _D =20A		3		nC	
Gate-Drain Charge	Q_{GD}			6			
Turn-ON Delay Time	t _{D(ON)}			14			
Turn-ON Rise Time	t _R	V_{DS} =15 V, V_{GS} =10V, I_{D} =1.0A,		18		ns	
Turn-OFF Delay Time	t _{D(OFF)}	$R_G = 3.3 \Omega, R_L = 0.75 \Omega$		32			
Turn-OFF Fall-Time	t _F			28			
SOURCE- DRAIN DIODE RATINGS AN	D CHARACT	ERISTICS					
Maximum Continuous Drain-Source					40		
Diode Forward Current	I _S						
Maximum Pulsed Drain-Source Diode	I _{SM}				80	Α	
Forward Current					00		
Drain-Source Diode Forward Voltage	V_{SD}	$T_J=25^{\circ}C$, $I_S=40A$, $V_{GS}=0V$			1.3	V	


Notes: 1. Repetitive rating; pulse width limited by max. junction temperature.

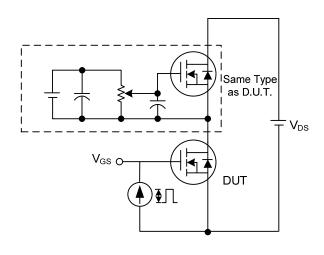
2. Pulse width \leq 300us, duty cycle \leq 2%.

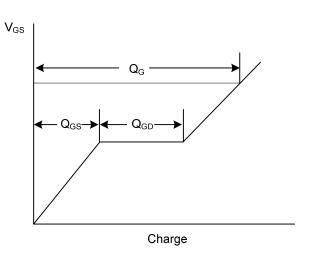
■ TEST CIRCUITS AND WAVEFORMS


Peak Diode Recovery dv/dt Test Circuit

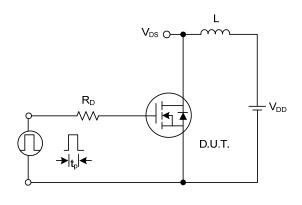
Peak Diode Recovery dv/dt Waveforms

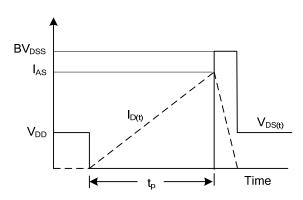
UT40N03 Power MOSFET


■ TEST CIRCUITS AND WAVEFORMS



Switching Test Circuit


Switching Waveforms



Gate Charge Test Circuit

Gate Charge Waveform

Unclamped Inductive Switching Test Circuit

Unclamped Inductive Switching Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.