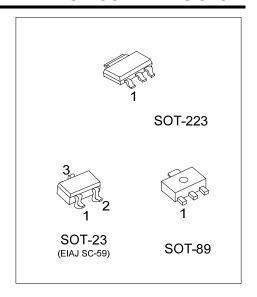
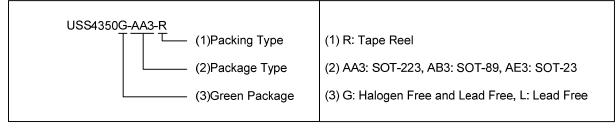
USS4350

NPN SILICON TRANSISTOR

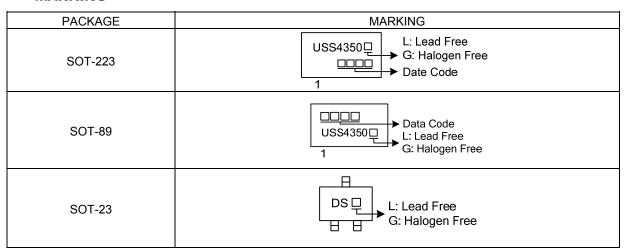

3.0A, 50V NPN LOW $V_{CE(SAT)}$ TRANSISTOR

■ DESCRIPTION

The **UTC USS4350** is a low $V_{CE\,(SAT)}$ NPN transistor designed for applications, such as: DC/DC converter, supply line switching, battery charger, linear voltage regulation, driver in low supply voltage applications and inductive load driver.


■ FEATURES

- * Collector-emitter saturation voltage:50V
- * High collector current gain (hFE) under high I_C conditions
- * High collector current capability
- * Higher efficiency resulting in less heat generation
- * Complementary to UTC USS5350



ORDERING INFORMATION

Ordering Number		Dooksas	Pin Assignment			Dooking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
USS4350L-AA3-R	USS4350G-AA3-R	SOT-223	В	С	Е	Tape Reel	
USS4350L-AB3-R	USS4350G-AB3-R	SOT-89	В	С	E	Tape Reel	
USS4350L-AE3-R	USS4350G-AE3-R	SOT-23	В	Е	С	Tape Reel	

MARKING

www.unisonic.com.tw 1 of 4

■ **ABSOLUTE MAXIMUM RATINGS** (T_A=25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Collector-Base Voltage		V _{CBO}	60	V
Collector-Emitter Voltage		V_{CEO}	50	V
Emitter-Base Voltage		V_{EBO}	6	V
0.11(0	DC	Ic	3	Α
Collector Current	Peak	I _{CM}	5	Α
Peak Base Current		I _{BM}	1	Α
	SOT-89		1.4	W
Power Dissipation (T _C =25°C) (Note 2)	SOT-223	P_{D}	2	W
	SOT-23]	0.35	W
Junction Temperature		TJ	150	°C
Operating Temperature		T _{OPR}	-65 ~ +150	°C
Storage Temperature		T _{STG}	-65 ~ +150	°C

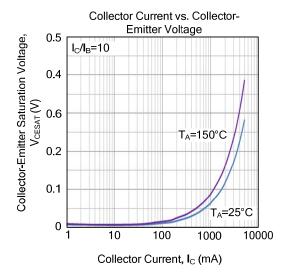
Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

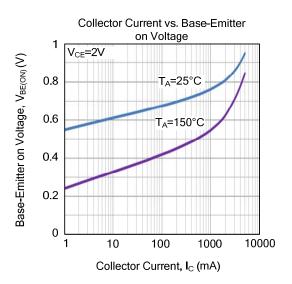
Absolute maximum ratings are stress ratings only and functional device operation is not implied.

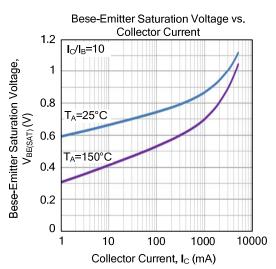
■ THERMAL DATA (Note)

PARAMETER		SYMBOL	RATINGS	UNIT
	SOT-89		90	°C/W
Junction to Ambient	SOT-223	θ_{JA}	62.5	°C/W
	SOT-23		357.1	°C/W

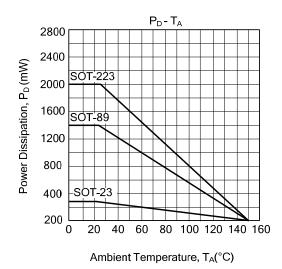
Note: Device mounted on FR-4 substrate P_C board, 2oz copper, with 1inch square copper plate.

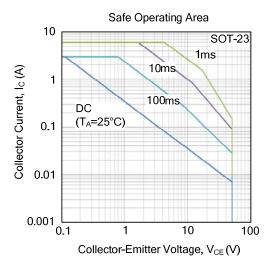

■ **ELECTRICAL CHARACTERISTICS** (T_A=25°C, unless otherwise specified)


PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Collector Cut-off Current	I _{CBO}	V_{CB} =50V, I_E =0			100	nA
Emitter Cut-off Current	I _{EBO}	$V_{EB}=5V$, $I_{C}=0$			100	nA
Collector-Emitter Saturation Voltage	V _{CE(SAT)}	I _C =500mA, I _B =50mA			90	mV
		I _C =1.0A, I _B =50mA			170	mV
		I _C =2.0A, I _B =200mA (Note)			290	mV
Base-Emitter Saturation Voltage	$V_{BE(SAT)}$	I _C =2.0A, I _B =200mA (Note)			1.2	V
Base-Emitter Turn-On Voltage	$V_{BE(ON)}$	V _{CE} =2.0V, I _C =1.0A (Note)			1.1	V
	h _{FE1}	V _{CE} =2.0V, I _C =500mA	200			
DC Current Gain	h _{FE2}	V _{CE} =2.0V, I _C =1.0A (Note)	200			
	h _{FE3}	V _{CE} =2.0V, I _C =2.0A (Note)	100			
Equivalent On-Resistance	R _{CE(SAT)}	I _C =2.0A, I _B =200mA (Note)		110	<145	mΩ
Transition Frequency	f _T	I _C =100mA, V _{CE} =5.0V, f=100MHz	100			MHz
Collector Capacitance	Cc	V_{CB} =10V, I_E = I_e =0, f=1MHz			30	pF


Note: Pulse test: $t_P \le 300 \mu s$; Duty cycle $\le 2\%$.


^{2.} Device mounted on a printed-circuit board; single sided copper; tinplated; mounting pad for collector 6 cm²


■ TYPICAL CHARACTERISTICS



UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.