

UTC UNISONIC TECHNOLOGIES CO., LTD

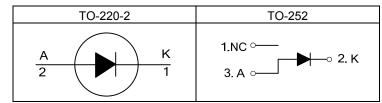
BYC5

Preliminary

DIODE

ULTRAFAST, LOW SWITCHING LOSS RECTIFIER DIODE

DESCRIPTION

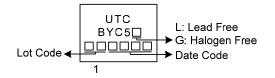

The UTC BYC5 is a rectifier diode. It provides the designers with ultra-fast switching and low switching loss.

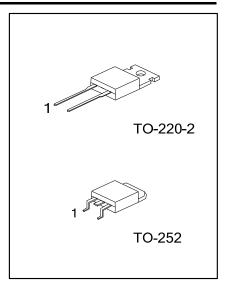
The UTC BYC5 is suitable for half-bridge lighting ballasts, half-bridge/full-bridge switched mode power supplies and active power factor correction applications.

FEATURES

- * Low Reverse Recovery Current
- * Ultra-Fast Switching
- * Low Switching Loss
- * Low Thermal Resistance

SYMBOL


ORDERING INFORMATION


Ordering Number		Pin Assignment			Deaking	
Halogen Free	Раскаде	1	2	3	Packing	
BYC5G-6-TA2-T	TO-220-2	К	А	NC	Tube	
BYC5G-6-TN3-T	TO-252	NC	К	Α	Tube	
BYC5G-6-TN3-R	TO-252	NC	К	Α	Tape Reel	
	Halogen Free BYC5G-6-TA2-T BYC5G-6-TN3-T	Halogen FreePackageBYC5G-6-TA2-TTO-220-2BYC5G-6-TN3-TTO-252	Halogen FreePackageBYC5G-6-TA2-TTO-220-2KBYC5G-6-TN3-TTO-252NC	Halogen FreePackageBYC5G-6-TA2-TTO-220-2KBYC5G-6-TN3-TTO-252NC	Halogen FreePackage123BYC5G-6-TA2-TTO-220-2KANCBYC5G-6-TN3-TTO-252NCKA	

Note: Pin Assignment: A: Anode K: Cathode

BY	C5G-6-TA2-T	(1) T: Tube
	(2)Package Type	(2) TA2: TO-220-2, TN3: TO-252
	(3)Green Package	(3) G: Halogen Free and Lead Free, L: Lead Free

MARKING

ABSOLUTE MAXIMUM RATINGS

PARA	SYMBOL	RATINGS	UNIT	
Peak Repetitive Reverse Volta	ge	V _{RRM}	600	V
Crest Working Reverse Voltage	9	V _{RWM}	600	V
Continuous Reverse Voltage	T _{Tab} ≤ 110°C	V _R 500		V
Average Forward Current	δ =0.5; with reapplied V _{RRM(max}); T _{Tab} ≤89°C	I _{F(AV)}	5	А
Repetitive Peak Forward Current	δ =0.5; with reapplied V _{RRM(max}); T _{Tab} ≤ 89°C	I _{FRM}	I _{FRM} 10	
	t = 10ms		40	А
Non-Repetitive Peak Forward Current	t = 8.3ms sinusoidal; T _J =150°C prior to surge with reapplied V _{RWM(max)}	I _{FSM}	44	A
Junction Temperature		TJ	150	°C
Storage Temperature	T _{STG} -40 ~ +150		°C	

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

THERMAL CHARACTERISTICS

PARAMETER		SYMBOL	RATINGS	UNIT
Junction to Ambient	TO-220-2	θ _{JA}	60	°C/W
	TO-252		80	°C/W
Junction to Case	TO-220-2	- θ _{JC}	2.5	°C/W
	TO-252		3.5	°C/W

■ **ELECTRICAL CHARACTERISTICS** (T_J =25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS		TYP	MAX	UNIT
	VF	I _F =5A, T _J =150°C		1.4	1.75	V
Forward Voltage		I _F =10A, T _J =150°C		1.75	2.2	V
		I _F =5A		2.0	2.9	V
Reverse Current	D	V _R =600V		9	100	μA
		V _R =500V, T _J =100°C		0.9	3.0	mA
Reverse Recovery Time	Īpp	I _F =1A, V _R =30V, dI _F /dt=50A/μs			55	ns
		I _F =5A, V _R =400V, dI _F /dt=300A/µs		48		ns
Forward Recovery Voltage	V_{FR}	I _F =10A, dI _F /dt=100A/μs		9	11	V

TYPICAL CHARACTERISTICS

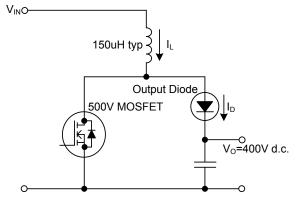


Fig.1. Typical application, output rectifier in boost converter power factor correction circuit. Continuous conduction mode, where the transistor turns on whilst forward current is still flowing in the diode.

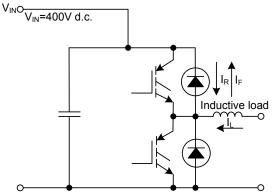


Fig.2. Typical application, freewheeling diode in half bridge converter. Continuous conduction mode, where each transistor turns on whilst forward current is still flowing in the other bridge leg diode.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

