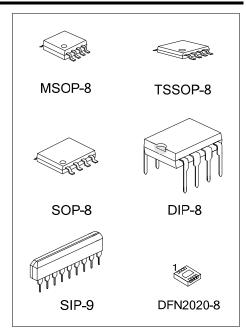


UNISONIC TECHNOLOGIES CO., LTD

LM358

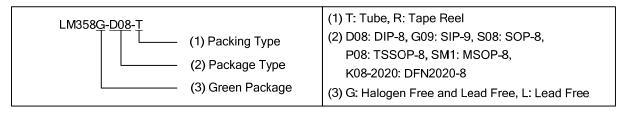
LINEAR INTEGRATED CIRCUIT

DUAL OPERATIONAL AMPLIFIER

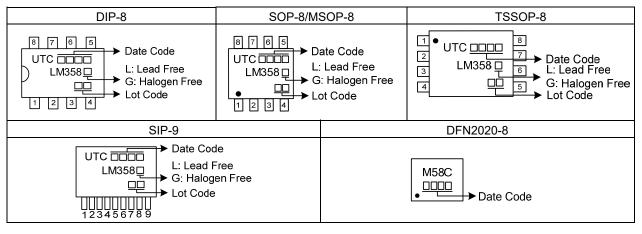

DESCRIPTION

The UTC LM358 consists of two independent high gain, internally frequency compensated operational amplifier. It can be operated from a single power supply and also split power supplies.

FEATURES

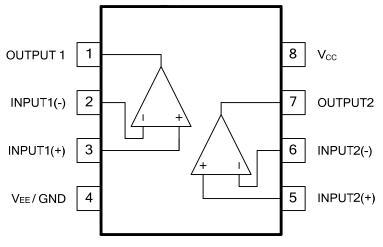

*Internally frequency compensated for unity gain. *Wide power supply range 3V - 32V. *Input common-mode voltage range include ground.

*Large DC voltage gain.

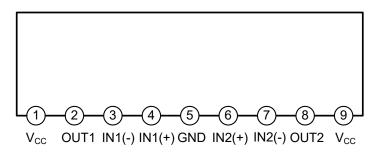


ORDERING INFORMATION

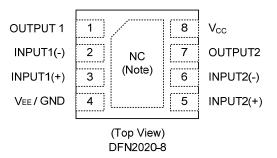
Ordering Number		Deekege	Dealing	
Lead Free	Halogen-Free	Package	Packing	
LM358L-D08-T	LM358G-D08-T	DIP-8	Tube	
LM358L-L09-T	LM358G-G09-T	SIP-9	Tube	
LM358L-P08-R	LM358G-P08-R	TSSOP-8	Tape Reel	
LM358L-S08-R	LM358G-S08-R	SOP-8	Tape Reel	
LM358L-SM1-R	LM358G-SM1-R	MSOP-8	Tape Reel	
LM358L-K08-2020-R	LM358G-K08-2020-R	DFN2020-8	Tape Reel	



MARKING

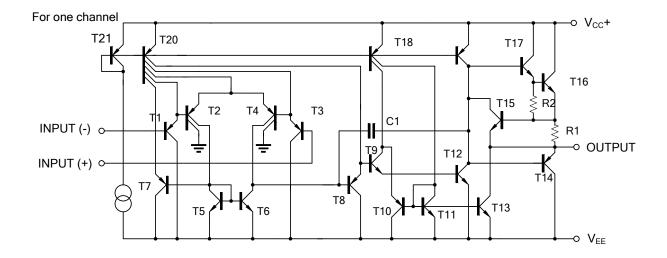


LM358


PIN DESCRIPTION

SOP-8/DIP-8/MSOP-8/TSSOP-8

SIP-9



Note: No connect.

LM358

BLOCK DIAGRAM

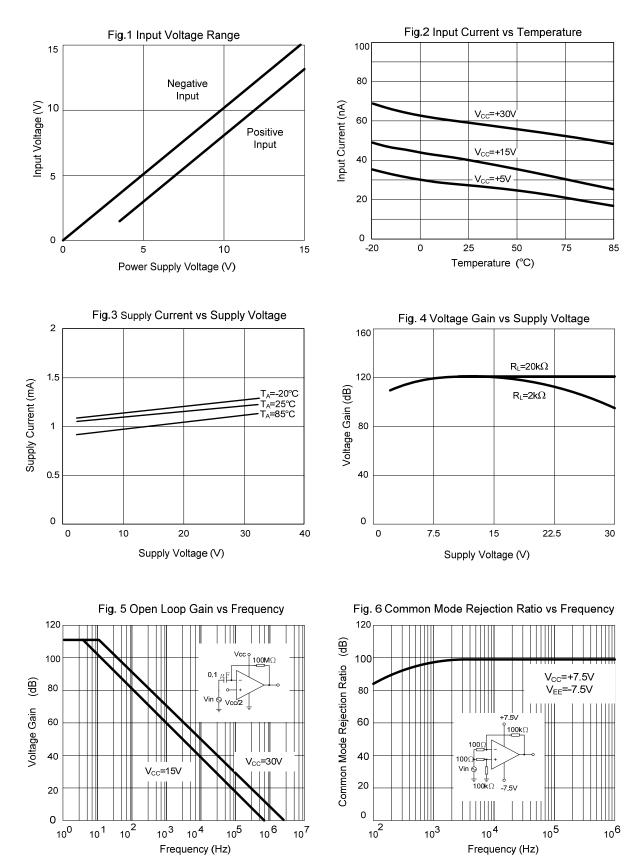
ABSOLUTE MAXIMUM RATINGS

PARAMETER		SYMBOL	RATINGS	UNIT
Supply Voltage		Vcc	±16 or 32	V
Differential Input Voltage		VI(DIFF)	±32	V
Input Voltage		VI	-0.3 ~ +32	V
Output Short to Ground			Continuous	
Power Dissipation	SIP-9		750	mW
	DIP-8		625	mW
	SOP-8		440	mW
	TSSOP-8	P _D	360	mW
	MSOP-8		300	mW
	DFN2020-8		830	mW
Junction Temperature		TJ	+150	°C
Operating Temperature (Note 2)		TOPR	-20 ~ +85	°C
Storage Temperature		T _{STG}	-65 ~ +150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

2. It is guarantee by design, not 100% be tested.

■ ELECTRICAL CHARACTERISTICS (V_{CC}=5.0V, V_{EE}=GND, T_A=25°C, unless otherwise specified)


PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Input Offset Voltage	VI(OFF)	V _{CM} =0V toV _{CC} -1.5V V _{O(P)} =1.4V, Rs=0Ω		2.0	5.0	mV
Input Common Mode Voltage	VI(CM)	V _{CC} =3V~30V	0		Vcc-1.5	V
Differential Input Voltage	V _{I(DIFF)}				Vcc	V
Input Offset Current	II(OFF)			5	50	nA
Input Bias Current	I _{I(BIAS)}			45	250	nA
	V _{он}	Vcc=5V, RL=2KΩ	Vcc-1.6			V
Output Voltage Swing		Vcc=30V, RL=2KΩ	26			V
		Vcc=30V, RL=10KΩ	27	28		V
	Vol	V_{CC} =5V, $R_L \ge 10 K\Omega$		5	20	mV
Large Signal Voltage Gain	Gv	V _{CC} =15V, R _L ≧2KΩ V _{O(P)} =1V ~ 11V	25	100		V/mV
	Icc	R _L =∞, V _{CC} =30V		1.2	2.0	mA
Power Supply Current		R∟=∞, V _{CC} =5V Full Temperature Range		0.5	1.2	mA
Short Circuit Current to Ground	Isc			40	70	mA
Output Current	ISOURCE	V _I (+)=1V, V _I (-)=0V V _{CC} =15V, V _{O(P)} =2V	10	20		mA
	Isink	V _I (+)=0V, V _I (-)=1V V _{CC} =15V, V _{O(P)} =2V	10	20		mA
		V _I (+)=0V, V _I (-)=1V V _{CC} =15V, V _{O(P)} =200mV	12	100		μΑ
Common Mode Rejection Ratio	CMRR		65	100		dB
Power Supply Rejection Ratio	PSRR		65	100		dB
Channel Separation	CS	f=1KHZ ~ 20KHZ		120		dB
Gain Bandwidth Product	GBW			1.1		MHz
Slew Rate	SR			0.6		V/µs

LM358

LINEAR INTEGRATED CIRCUIT

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS (Cont.)

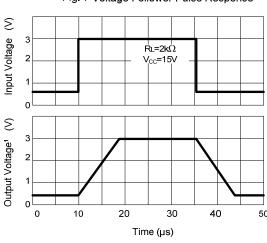
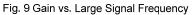



Fig. 7 Voltage Follower Pulse Response

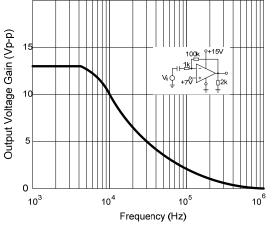
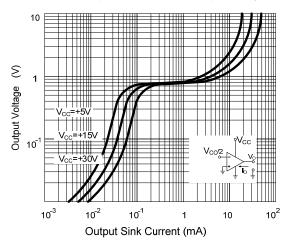



Fig. 11 Output Sink Current vs Output Voltage

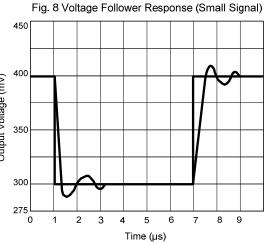
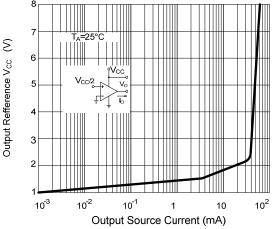
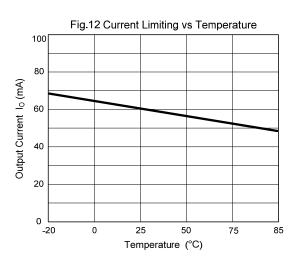




Fig. 10 Output Source Current vs Output Voltage

Output Voltage (mV) 50 8

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

